透過您的圖書館登入
IP:54.226.126.38
  • 學位論文

ㄧ維奈米結構氧化鈦的製備與染料敏化太陽能電池的應用

Fabrication of One-dimension Titania Nanostructure and Application of Dye-sensitized Solar Cells

指導教授 : 蘇昭瑾

摘要


在染料敏化太陽能電池系統中,二氧化鈦奈米顆粒扮演吸附染料及傳遞電子的角色。近年來研究中指出適當地摻入ㄧ維奈米結構氧化鈦可以增加光散射特性,奈米顆粒與ㄧ維奈米結構氧化鈦的複合材料,同時具有高表面積和較快的電子傳遞效率,亦可增加入射光散射及光利用率。 在本研究中我們將商用二氧化鈦粉體Merck Anatase (MA) 置於強鹼溶液中以水熱法製得氧化鈦奈米管(Tnt) 、奈米棒(Tnr)、奈米線(Tnw),並應用於染料敏化太陽能電池光陽極。將奈米管(Tnt)和商業化ISK ST-01 做不同比例混掺(5/95、20/80、40/60、60/40 and 80/20),在AM 1.5模擬太陽光照射下(100 mW/cm2),進行電池的光電轉換效率測試。實驗結果發現Tnt-20%(20 % Tnt,80 % ST-01)表現最佳,其光電轉換效率為7.58%。 接著將奈米棒(Tnr)與奈米線(Tnw)做不同溫度(300、400、500、600及700 °C)鍛燒,然後我們將600 °C 煅燒處理的奈米棒(或奈米線) 和ST-01 做不同比例混掺(5/95、20/80、40/60、60/40 and 80/20),發現Tnr-20% (20 % Tnr,80 % ST-01)與Tnw-5% (5 % Tnw,95% ST-01)表現最佳,其光電轉換效率分別為8.21和8.46 %。 之後利用三種不同形貌的ㄧ維奈米結構氧化鈦材料,分別為氧化鈦奈米管(Tnt) 、奈米棒(Tnr)、奈米線(Tnw),以層狀結構設計,在ST-01層上方分別塗上一層Tnt、Tnr和Tnw,可以有效將光電轉換效率從ST-01的6.58%分別提升至ST-01/Tnt的7.83% 、ST-01/Tnr的8.58%、ST-01/Tnw的7.96%。然後我們在SG-TiO2(以溶膠凝膠法所製備的奈米顆粒)層上方塗上一層Tnr,效率從SG-TiO2的7.59%提升至SG-TiO2/Tnr的9.15%。入射單色光子-電子轉化效率(IPCE)測量實驗顯示,藉著奈米棒Tnr添加所設計的層狀電極,在全波長區域皆有明顯增加,可能是由於Tnr的高散射特性提高了光的使用率。

並列摘要


In dye-sensitized solar cell (DSSC) system, TiO2 nanoparticles function as dye adsorption and electron transport. Recently it has been reported that the appropriate addition of one-dimension titania nanostructure could increase the light-scattering. nanoparticle/ one-dimension titania nanostructure composites can possess the high surface area and the rapid electron transport rate , but also enhance the light-scattering efficiency. In this study, titania nanotube (Tnt)、nanorod (Tnr) and nanowire(Tnw) , which was prepared from commercial Merck Anatase TiO2 powders (MA) by alkaline hydrothermal method, was applied to fabricate the dye-sensitized solar cells (DSSCs) photoanodes. the TiO2 paste was prepared by mixing Tnt and commercial ISK ST-01 TiO2 with various weight ratio (5/95、20/80、40/60、60/40 and 80/20) , The electrodes illuminated by a light source of simulated AM1.5 with light intensity of 100 mW/cm2 to perform the photoelectron conversion efficiency test. It was found that the Tnt-20% (20 % Tnt,80 % ST-01) showed the best conversion efficiency of 7.58 %. Following, Tnt and Tnw were calcined at different temperatures (300, 400, 500 ,600and 700 °C),then we mixed Tnr ( Tnw ) which calcined at 600 °C and ISK ST-01 with various weight ratio (5/95、20/80、40/60、60/40 and 80/20) , It was found that the Tnr-20% (20 % Tnr,80 % ST-01) and the Tnw-5% (5 % Tnw,95% ST-01) showed the best conversion efficiency of 8.21 and 8.46 %. One-dimension Titania of three different morphologies, i.e., titania nanotube (Tnt)、nanorod (Tnr) and nanowire(Tnw). Layer-design was utilized instead of mix-design to coat a layer of Tnt (Tnr、Tnw) onto ST-01 layer. The conversion efficiency was elevated from 6.58% (ST-01-based DSSC) to7.83% (ST-01/Tnt-based DSSC)、8.58% (ST-01/Tnr-based DSSC) and 7.96% (ST-01/Tnw-based DSSC).then we coated a layer of Tnr onto SG-TiO2 (nanoparticle prepared by sol-gel method )layer. The conversion efficiency was elevated from 7.59% (SG-TiO2-based DSSC) to9.15% (SG/Tnr-based DSSC). Incident monochromatic photon-to-current efficiency (IPCE) measurements revealed that the utilization of the layered electrode designed by addition of Tnr to increase in full-wavelength spectrum as the higher light-harvesting efficiency enhanced by Tnr with high light-scattering property.

參考文獻


71. 洪維成,碩士論文,”二氧化鈦奈米材料的製備與染料敏化太陽能電池特性研究:從一維結構到銀的表面改質”,國立台北科技大學化學系,(2008) 台北。
70. 蕭光宏,碩士論文,”二氧化鈦微結構對染料敏化太陽能電池光電效能的影響”,國立台灣大學化學系,(2008) 台北。
1. M. Grätzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
3. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A 365 (2007) 993-1005.
4. B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.

延伸閱讀