Translated Titles

Applicable Study on Taiwan Electronic Industry Financial Crisis Predictive Model Based on Logistic Regression



Key Words

財務與非財務指標 ; 資料長度 ; 配對比率 ; 預警模型 ; 邏吉斯迴歸 ; financial and non-financial index ; data span ; matching method ; crisis alert model ; Logistic regression



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

Recently, the occurrence of the landmine share contributed to great loss of public investors and most of them were the electronic industries which were the focus of investing. To protect the rights and interests of investors and creditors, it is necessary to construct a financial alert system. Most researches used the data of year, but it was too late to get the data in the end of the year or the beginning of next year. In this study, we introduced the data of quarters to the alert model. The result showed that the data of quarter was better than data of year, especially one year before crisis. To matching principle, most domestic researches only assumed the matching principle without experimenting it. This study categorized the data to pair (1:1) and non-pair (1:3). The result showed that obviously the pair data were better than non-pair data. To variables selection, most researches used financial balances to construct alert model but the result did not satisfying. This study added non-financial variables(governance variables and credit rating) to derive the most suitable model. The result showed that the accurate rate of the model adding governance variables and credit rating increased to 90.9%. The result showed that debt ratios、EPS and Total asset turnover ratio are all prior index. Among governance variables and Credit rating, Debt ratio、Flow rate、Total asset turnover ratio、EPS、Pledge ratio of directors and credit rating of TCRI were prior index discriminating normal and crisis. The posterior index were Growth rate of total assets. The best model in this study used financial balances, governance variables and credit rating of quarter. Hopefully, we could provide the public of investors and managers a tool to examine enterprises and lower the investing risk.

Topic Category 管理學院 > 工業工程與管理系碩士班
工程學 > 工程學總論
社會科學 > 管理學
  1. [2] A. Agresti, An Introduction to Categorical Data Analysis. New York:Wiley Series in Probability and Statistics, 1996.
  2. [3] J. Argenti, Corporate Collapse: The Causes and Symptoms. London: McGraw- Hill, 1976.
  3. [6] 許溪南、歐陽豪、陳慶芳,「盈餘管理、公司治理與財務預警模型之建構」,金融風險管理季刊,第3卷,第3期,第1-40頁,2007。
  4. [7] E.I. Altman, “Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankrupty.” Journal of Finance, Vol. 23, no. 4, 1968, pp. 589-609.
  5. [8] F.A. Amir, “Bankruptcy Prediction for Credit Risk Using Neural Networks :A Survey and New Results,” IEEE Transaction JNL on Neural Networks, Vol. 12, no.4, 2001, pp. 929-935.
  6. [9] J. Berkson, “Application of the Logistic Function to Bio-Assay,” Journal of the American Statistical Association, Vol.39, 1944, pp. 357-365.
  7. [10] M. Blum, “Failure Company Discriminant Analysis,” Journal of Accounting Research, Vol. 12, 1974, pp. 1-25.
  8. [11] W.H. Beaver, “Financial Ratios as Predictors of Failure in Empirical Research in Accounting : Selected studies,” Supplement to Journal of Accounting Resarch, Vol. 4, 1966, pp. 77-111.
  9. [13] K. C. Chen and C. J. Lee, “Financial Ratios and Corporate Endurance: A Case of the Oil and Gas Industry,” Contemporary Accounting Research, Vol.9, No.2, 1993, pp. 667-694.
  10. [15] C. M. Daily, and D. R. Dalton, , “Bankruptcy and Corporate Governance: The Impact of Board Composition and Structure,” Academy of Management, Vol.37, 1994, pp. 1603-1617.
  11. [16] E. Deakin, “A discriminant Analysis of Predictors of Business Failure,” Journal of Accounting Research, Vol.10, 1972, pp. 167-179.
  12. [17] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, Vol.7, 1936, pp. 179–188.
  13. [19] W. Hopwood, J. C. McKeown and J. F. Mutchler, “A Reexamination of Auditor Versus Model Accuracy within the Context of the Going-Concern Opinion Decision,” Contemporary Accounting Research, Vol.10, 1994, pp. 409-431.
  14. [21] R. Merton, “On the pricing of corporate debt: The risk structure of interest rates.” J. Finance, Vol.29, 1974, pp. 449-470.
  15. [22] N.J.D. Nagelkerke, “A Note on General Definition of the Coefficient of Determination,” Biometrics, Vol.78, 1991, pp.691-692.
  16. [23] J. A. Ohlson, “Financial Ratios and the Probabilistic Predicition of Bankruptcy,” Journal of Accounting Research, Vol.18, 1980, pp. 109-131
  17. [24] H.D. Platt, and M.B. Platt, “Predicting corporate financial distress: reflection sonchoice-based sample bias,” Journal of Economics and Finance, Vol.26, 2002, pp. 184-199.
  18. [25] L. M. Salchenberger, E. M. Cinar, and N. A. Lash, “Neural Networks: A New Tool for Prediction Thrift Failures,” Decision Sciences, Vol.23, 1992, pp. 899-916 .
  19. [26] K. Y. Tam and Y. M. Kiang, “Managerial Application of Neural Network: The Case of Bank Failure Predictions,” Management Science, Vol.38, 1992, pp. 926-947.
  20. [27] R. B. Whitaker, “The Early Stages of Financial Distress,” Journal of Economics and Finance, Vol.23, 1999, pp. 123-133.
  21. [29] M.E. Zimjewski, “Methodological Issues Related to the Estimation of Financial Distress Prediction Models,” Journal of Accunting, Vol.22, 1984, pp. 59-86.
  22. 參考文獻
  23. 書籍
  24. [1] 陳隆麒譯,現代財務管理理論與應用,台北:華泰書局股份有 限公司,1993。
  25. [4] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression (2nd ed.), New York: John Wiley and Sons, 2000.
  26. 期刊論文
  27. [5] 李洪慧,「證券經紀商之動態化財務預警模型研究」,產業金融期刊,第103 期,頁10,1998。
  28. [12] K. C. Chen and B. K. Church, “Default Debt Obligations and the Issues of Going-concern Options,” A Journal of Practice and Theory, Vol.11, 1992, pp. 30-49.
  29. [14] W. Cheng-Ying, ”Using Non-Financial Information to Predict Bankruptcy: A Study of Public Companies in Taiwan,” International Journal of Management, Vol. 21, 2004, pp. 194-201.
  30. [18] J. A. Gentry, P. Newbold and D. T. Whitford, “Funds Flow Components, Financial Ratios, and Bankruptcy,” Journal of Business Finance and Accounting, Vol.14, No.4, 1987, pp. 595-606.
  31. [20] E. K. Laitinen and T. Laitinen, “Cash Management Behavior and Failure Prediction,” Journal of Business Finance and Accounting, Vol. 25, No. 7-8, 1998, pp. 893-919.
  32. [28] T. J. Ward and B. P. Foster, “Using Cash Flow Trend to Identify Risks of Bankruptcy,” The CPA Journal, Vol.67, No.9, 1997, pp.60-61.
  33. 會議論文
  34. [30] 張大為,「千禧年台灣企業財務危機」,中華徵信所專題演講稿,台北,2001年4月。
  35. 學位論文
  36. [31] 池千駒,運用財務性、非財務性資訊建立我國上市公司財務困難預警模式,碩士論文,國立成功大學會計學研究所,台南,1999。
  37. [32] 洪啟智,集團企業財務危機之預警研究,碩士論文,國立中央大學財務管理研究所,桃園,1998。
  38. [33] 陳肇榮,運用財務比率預測財務危機之實證研究,博士論文,政治大學財政研究所,台北,1982。
  39. [34] 黃建華,加入公司治理變數建構台灣上市上櫃公司之財務危機預警模型,碩士論文,東吳大學國際貿易所,台北,2006。
  40. [35] 張謙諒,我國上市公司財務危機預警資訊之研究-考慮公司治理因素,碩士論文,銘傳大學財務金融研究所,台北,2004。
  41. [36] 楊浚泓,考慮財務操作與合作報表後之財務危機預警模式,碩士論文,中央大學財務管理所,桃園,2000。
  42. [37] 潘玉葉,台灣上市公司財務危機預警分析,博士論文,淡江大學管理研究所,台北,1990。
  43. [38] 劉容慈,整合公司治理、會計資訊與總體經濟敏感度之財務危機模型,碩士論文,輔仁大學金融研究所,台北,2001。
  44. [39] 戴鳳玲,類神經網路與Logit模式對財務危機預測能力之比較研究,碩士論文,東吳大學企業管理所,台北,1996。
Times Cited
  1. 劉均猷(2011)。財務預警混合模式之特徵篩選與模型建構-以台灣電子產業為例。臺北科技大學工業工程與管理系碩士班學位論文。2011。1-69。