Title

陽極電極壓力對直接甲醇燃料電池之性能影響

Translated Titles

Influence of Anode Electrode Pressure on the Performance of Direct Methanol Fuel Cell

Authors

徐志豪

Key Words

直接甲醇燃料電池 ; 二氧化碳 ; 介面壓力 ; 螺栓壓力 ; Direct Methanol Fuel Cell ; CO2 ; Clamping Pressure ; Bolt-Clamping

PublicationName

臺北科技大學機電整合研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

蘇春熺

Content Language

繁體中文

Chinese Abstract

隨著能源價格上升,且需求量不斷增加,因此替代能源成為新的發展方向,直接甲醇燃料電池(Direct Methanol Fuel Cell)可成為小型電子產品之替代能源。燃料電池組裝時,受到螺栓施加壓力不平均而導致集電板變形,這些變形將影響到電池之發電效能。本研究主要探討施加不同壓力於陽極MEA時變形量對於效能之影響與利用CCD影像估算甲醇消耗量。實驗將分為三個部分,首先,利用ANSYS模擬當改變陽極電集位置時MEA的變形量;第二部分為量測其電池功率效能,此部分可以分為改變陽極集電位置以及施加不同壓力於陽極集電位置,並探討溫度變化對於電池效能之影響;最後為利用CCD (Charge Coupled Detector) 擷取電化學反應所生成之二氧化碳氣泡影像,並利用氣泡面積估算甲醇消耗量。 由模擬結果可以得到擺放於中央位置的變形量較為均勻,其餘位置所得之變形分析結果較為不均勻;陽極集電位置在靠近陰極集電端之效能較佳,遠離陰極集電端則效能較低;施加較高壓力於陽極MEA上,電池量測效能較佳,最高功率密度可達1.18 mW.cm-2,當溫度增加時量測效能之最高功率密度為2.06 mW.cm-2,增加率為75 %。由交流阻抗測得阻值受到壓力增加而有減少之趨勢,當施加壓力為1.55 N.mm-2阻抗為0.65 Ω,施加壓力為1.35 N.mm-2阻抗為1.93 Ω;最後經由CCD量測甲醇消耗量之結果,越高負載之電流密度,所消耗之甲醇較多,使用之時間縮短,因為高電流密度電化學反應較劇烈,因此較容易造成甲醇毒化及消耗等問題產生,因此所提供效能之時間較短。

English Abstract

The price of energy was increased and consumes more than before. So many researchers want to find new energy to replace oil. Direct Methanol Fuel Cell (DMFC) will become the best option of portable electronic products. The miniature DMFC and air-breathing DMFC has become recently the major design concepts of DMFC stacks development. This paper aim at the effect of assembles DMFC, because the different machine bolts force to pressure DMFC structure. Inadequate clamping pressure may lead to leakage of fuel cell, high electric impedance and malfunction of the fuel cell. In order to treat about fuel cell capability under different coefficients in the anode collection, include anode place、anode pressure and temperature of DMFC. In the experiment, it used ANSYS’s Workbench software to simulate different places of anode collection and different pressures of anode collection. A charge coupled detector (CCD) camera was used to take images of carbon dioxide (CO2) during operation of DMFC. To measure volume of carbon dioxide (CO2) created at anodic of direct methanol fuel cell (DMFC) using image processing. For DMFC in order to explore relation between current output and as-imaged carbon dioxide (CO2) volume at 25 °C. The simulation results can know that the current collectors placed at the central location of the deformation is more uniform than the other position results from more uniform deformation. Current collector exert high pressure on the anode of the MEA can measure better battery performance. The maximum power density was 1.18 mW. cm-2. When the temperature increases to 50 C, the maximum power density measure was 2.06 mW.cm-2, increase the rate of 75%. Impedance measured resistance has decrease in the trend because the pressure of increasing. When the pressure is 1.55 N.mm-2 resistance of 0.65 Ω, pressure to 1.35 N.mm-2 resistance of 1.93 Ω.

Topic Category 機電學院 > 機電整合研究所
工程學 > 電機工程
Reference
  1. [1] Larminie, J. and A. Dicks, Fuel Cell Systems Explained, John Wiley, 2003,1-24.
    連結:
  2. [2] 郭書榕,具有不同電極結構之直接甲醇燃料電池的交流阻抗量測研究,碩士論文,國立臺北科技大學機電整合研究所,台北,2008。
    連結:
  3. [3] S. C. Thomas, X. Ren, S. Gottesfeld and P. Zelenay, “Direct Methanol Fuel Cells : Progress in Cell Performance and Cathode Research,” Electrochimica Acta,vol. 47, 2002, pp. 3741-3748.
    連結:
  4. [4] H. Chang, J. R. kim, J. H. Cho, H. K. Kim and K. H. Choi, “Materials and Process for Small Fuel Cells,” Solid State Ionics, vol. 148, 2002, pp. 601-606.
    連結:
  5. [5] Q. Liao, X. Zhu, X. Zheng and Y. Ding, “Visualization Study on the Dynamics of CO2 Bubbles in Anode Channels and Performance of A DMFC,” Journal of Power Sources, vol. 171, 2007, pp. 644-651.
    連結:
  6. [6] 黃士益,以步階電壓負載測試法分析直接甲醇燃料電池之研究,碩士論文,國立臺北科技大學機電整合研究所,台北,2008。
    連結:
  7. [7] Z. Qi and A. Kaufman, “Activation of low temperature PEM fuel cells,” Journal of Power Sources, vol. 111, 2002, pp. 181-184.
    連結:
  8. [8] F. Barbir, H. Gorgun and X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,” Journal of Power Sources, vol. 141, 2005, pp. 96-101.
    連結:
  9. [9] D. Chu and R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Sources, vol. 80, pp.226-234, 1999
    連結:
  10. [10] C. H. Chien, C. W. Lin and S. C. Li, “Experimental study of assembly contact pressure of micro-fuel cell stack,” the XIth International Congress and Exposition, Society for Experimental Mechanics, 2008.
    連結:
  11. [16] Larminie, J. and Dicks, Fuel Cell Systems Explained, John Wiley & Sons, 2001, LTD.
    連結:
  12. [19] 薛家豪,提高直接甲醇燃料電池陰極觸媒效能之製程參數最佳化研究,碩士論文,國立臺北科技大學製造科技研究所,台北,2008。
    連結:
  13. [22] E. Warburg, “Drud. Ann. der Physik,” Polarization capacity of platinum, vol. 6, 1901, pp. 125-135.
    連結:
  14. [23] J. E. B. Randles, “Kinetics of rapid electrode reactions,” Discuss. Faraday Soc, vol. 1, 1947, p.11.
    連結:
  15. [25] D. Savitri and C. K. Mitra, “Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance,” Bioelectrochemistry and Bioenergetics, vol. 48, 1999, pp. 163-169.
    連結:
  16. [26] A. B. kharitonov, L. Alfonta, E. Katz and I. Willner, “Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry”, Journal of Electroanalytical Chemistry, vol. 487, 2000, pp. 133-141.
    連結:
  17. [27] W. Stephen Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, PairOlocs Publication, Racine, Wisconsion. , 1994, pp. 79-115.
    連結:
  18. [31] El-Basiouny, M. S. and A. A. Mazhar, “Electrochemical behavior of passive layers on titanium,” Corrosion, vol. 38, no. 5, 1982, pp. 237-240.
    連結:
  19. [33] C. Xu, T. S. Zhao and Y. L. He, "Effect of Cathode Gas Diffusion Layer on Water transport and Cell Performance in Direct Methanol Fuel Cells," Journal of Power Sources, vol. 171, 2007, pp. 268-274.
    連結:
  20. [34] H. Yang, T. S. Zhao and Q. Ye, "Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cell," Journal of Power Sources, vol. 142, 2005, pp. 117-124.
    連結:
  21. [35] B.R. Fu and Chin Pan, “Bubble growth with chemical reactions in microchannels,” International Journal of Heat and Mass Transfer, vol. 52, 2008, pp. 767-776.
    連結:
  22. [37] Chao Xu, Amir Faghri, “Mass transport analysis of a passive vapor-feed direct methanol fuel cell,” Journal of Power Sources, vol.195, 2010, pp.7011-7024.
    連結:
  23. [11] 溫志湧、蔡秉蒼、黃國瑋,「質子交換膜燃料電池水氣生成觀測暨組裝界面壓力對性能之影響」, 中國機械工程學會第二十二屆全國學術研討會論文集, 桃園,2005,第A8-020頁。
  24. [12] 蔡秉蒼,質子交換膜燃料電池水氣生成觀測暨組裝界面壓力對性能之影響, 大葉大學機械與自動化工程學系碩士論文,彰化,2005。
  25. [13] 左峻德, 燃料電池之特性與應用,台北:行政院國家科學委員會科學技術資料中心,2001.
  26. [14] 葉芸軒,直接甲醇燃料電池MEA之理論模擬與分析,碩士論文,國立中山大學機械與機電工程學系研究所,高雄,2003。
  27. [15] 黃鎮江,燃料電池,台北:全華圖書,2003,第1-11頁。
  28. [17] 隋智通、隋升、羅冬梅,燃料電池及其應用,北京:冶金工業,2004,第13-14頁。
  29. [18] 蘇春熺、林啟瑞、張昌財、薛家豪、程柏維、洪新欽、彭康仁,質子交換膜燃料電池流道驗證與分析,2006第一屆台灣氫能與燃料電池學術研討會論文集,南投,2006,第378-383頁。
  30. [20] M. P. Hogarth, T. R. Ralph, “Catalysis for Low Temperature Fuel Cells. PART III: Challenges for the direct methanol fuel cell. Platinum Metals Rev,” Platinum Metals Review, vol. 46, 2002, p.146.
  31. [21] 趙中興,燃料電池基礎,台北:全華圖書,2008,第5-8頁。
  32. [24] M. Sluyters-Rehbach, and J. H. Sluyter, Comprehensive Treatise of Electrochemistry, New York: Plenum Press, 1984, pp. 177.
  33. [28] T. P. Hoar and D. C. Mears, “Corrosion-resistant alloy in chloride solution: Materials for Surgical Implants”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 294, no. 1439, 1996, pp. 486-510.
  34. [29] R. W. Schutz and D. E. Thomas, Corrosion of Titanium and Titanium Alloys, ASM Metal Handbook, 9th, vol. 13, 1987, pp. 669-706.
  35. [30] P.A. Maeusli, P.R. Bloch, V. Geret and S.G. Steinemann, “Surface characterization of titanium and titanium alloys,” Proceedings of the Fifth European Conference on Biomaterials Paris, France, September 4-6, Elsevier, 1986, pp. 57-62.
  36. [32] 曹楚南,電化學阻抗譜導論,北京:科學,2002,第20-21頁
  37. [36] Jianzhong Xia, Michael Jo1decke,AÄ lvaro Pe′rez-Salado Kamps and Gerd Maurer, “Solubility of CO2 in (CH3OH + H2O)”, Journal of Chemical and Engineering Data, vol. 49, No. 6, 2004.
  38. [38] 連國珍,數位影像處理,台北:儒林圖書,2004,第4-8頁
Times Cited
  1. 曹智凱(2011)。一種估算直接甲醇燃料電池之甲醇濃度之方法。臺北科技大學製造科技研究所學位論文。2011。1-97。