Title

合成摻氮超奈米晶鑽石薄膜做為紫外光感測器之應用

Translated Titles

Fabrication of n-doped ultrananocrystalline diamond films for UV sensor applications

Authors

郭為元

Key Words

超奈米晶鑽石薄膜 ; 氮摻雜 ; 紫外光感測器 ; Ultrananocrystalline diamond ; nitrogen doping ; Ultraviolet(UV) detector

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

林啟瑞

Content Language

繁體中文

Chinese Abstract

鑽石具有寬能隙及許多優異的物理與化學複合特性,被科學界喻為下個世代的半導體材料,但是一般化學氣相沈積法所合成的微米晶鑽石膜(MCD films),其粗糙度過大且不易透過摻雜提高其半導體特性,是MCD膜無法導入光電元件與應用的最大問題,故合成晶粒尺寸為奈米/超奈米等級之鑽石膜(Nanocrystalline/Ultrananocrystalline diamond, NCD/UNCD),被視為最佳解決方法之一。因此,本研究以微波電漿束化學氣相沈積系統改變甲烷濃度合成超奈米晶鑽石膜(UNCD films),並且透過氮元素之摻雜形成含氮超奈米晶鑽石膜(UNCD:N films),提升UNCD膜之電性,並探討在氬氣電漿改變甲烷濃度、工作壓力及氮氣濃度的影響,亦討論其薄膜之結構、光學、電性及薄膜基本性質之影響,並將鑽石薄膜製備為紫外光感測器,且探討其紫外光感測器之特性與效能。 研究中發現在氬氣電漿下提升甲烷濃度將使MCD薄膜轉變成UNCD薄膜,合成出低表面粗糙度以及晶粒大小為超奈米級之鑽石薄膜。在摻氮後薄膜之微結構及電性均明顯受到氮元素摻雜之影響,其中,在1%微量氮摻雜下將有效誘導鑽石朝(100)結晶面及特定方向成長,並發現晶粒形成針狀(needle-like)結構。 利用不同鑽石薄膜製備出紫外光感測器於光電導之探討,發現UNCD:N薄膜具有明顯的電流值變化(2.89 orders),主因是摻氮後晶粒成針狀可增加比表面積之光吸收率、表面較為平滑可降低暗電流及摻氮後提升電性所導致,且具備有良好的時間響應以及穩定的再現性,可應用於紫外光感測器。

English Abstract

Diamonds are considered as an ultimate material due to their own large energy gap and unique physicochemistry characteristics. Microcrystalline diamond (MCD) films, synthesized by conventional chemical vapour deposition (CVD) processes, however, possess high surface roughness due to their facet morphology. Also, this process are not readily available for doping activities, and thus hindering the potential uses of MCD films in semiconductor engineering fields. One way of synthesizing nanocrystalline/ultrananocrystalline diamond (NCD/UNCD) films is well-regarded as the effective method for resolving those restrictions. In this study, we propose here a method to synthesize ultrananocrystalline diamond (UNCD) using a home-made microwave plasma jet chemical vapour deposition (MPJCVD). Aiming at improvement of the electrical properties, nitrogen doping were conducted during the synthesis process for UNCD:N films. The effects of methane concentration, working pressure, and nitrogen incorporation on characteristics of the UNCD and UNCD:N films were investigated. In addition, the ultraviolet (UV) detection performance of the as-synthesized UNCD:N films were studied. In the synthesis of UNCD films, it was shown that increase in CH4 concentration induced the nanonization of diamond grains from microcrsytalline to ultrananocrystalline structure. The diamond growth by MPJCVD system was found to have high plasma density and ensure high activity species at low microwave power, thus led to ultra-smooth surface and ultrananocrystalline diamond grains of the as-synthesized films. As incorporated with nitrogen during the UNCD synthesis process, significant changes in microstructure, surface roughness, electrical and optical properties were observed. The low nitrogen doping (1%) also resulted in preferred growth in (100) orientation of diamond grains and needle-like shape in morphology of the UNCD:N films. In other stage of this study, the as-synthesized UNCD:N films were employed as absorption layer for UV detection application. The effects of microstructure and nitrogen incorporation on UV detection performance were studied. The UNCD:N film with needle-shape morphology possessed excellent photoconductivity which photo-dark current ratio achieved 2.89 orders with highly fast, stable, and reproducibility response to UV irradiation in air ambient. These good performance of the fabricated detector were due to the increase in UV irradiation absorption as results of a high surface-to-volume ratio of the UNCD:N films. Also, the obtained highly smooth surface and nitrogen incorporation of the films indeed ensured a relatively low dark current as well as good electrical characteristics of the fabricated UV detector. The above results demonstrated a prosperous applications of UNCD:N films in UV detection devices in the future.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [3] P. J. Crutzen, F. Arnold, "Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’," Nature, vol. 324, 1986, pp. 651-655.
    連結:
  2. [5] I. Cantarell and I. Almodovar, "Prediction, acceleration and correction of fatique effects in photomultiplier tubes," Int. J. Appl. Radiat. Isotopes, vol. 16, 1965, pp. 91-95.
    連結:
  3. [6] A. R. Franklin, W. W. Holloway, and D. H. Mcmahon, "Photomultiplier tube cooling device," Rev. Sci. Instrum., vol. 36, 1965, p. 232.
    連結:
  4. [7] G. Chodil, D. Hearn, and R. C. Jopson,"Background events in photomultiplier tubes at high altitudes,"Rev. Sci. Instrum., vol. 36, 1965, pp. 394-395.
    連結:
  5. [8] R. Krode and J. Geist,"Quantum efficiency stability of silicon photodiode," Appl. Opt. vol. 26, 1987, pp. 5284-5290.
    連結:
  6. [9] L. R. Canfield, J. Kerner, and R. Krode,"Stability and quantum efficiency performance of silicon photodiode detectors in the far ultravioler," Appl. Opt., vol. 28, 1989, pp. 3940-3943.
    連結:
  7. [10] H. Morkoc, S. Stritea, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns ,"Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies," J. Appl. Phys., vol. 76, 1994, pp. 1363-1398.
    連結:
  8. [11] J. J. T. Torvik, J. I. Pankove, and B. J. Van Zeghbroeck, "Comparison of GaN and 6H-SiC p-i-n photodetectors," IEEE Trans. Electron. Dev., vol. 46, 1999, pp. 1326-1331.
    連結:
  9. [12] T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa, and J. Akimitsu, "Superconductivity in carrier-doped silicon carbide," Sci. Technol. Adv. Mater. vol. 9, 2008, p. 044204.
    連結:
  10. [13] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, "AlGaN ultraviolet photoconductors grown on sapphire," Appl. Phys. Lett., vol. 68, 1996, pp. 2100-2102.
    連結:
  11. [14] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, "Small-signal frequency response of long-wavelength vertical-cavity lasers," IEEE Photonics Tech. Lett., vol. 13, 2001, pp. 1041-1135.
    連結:
  12. [15] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, "High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN," Appl. Phys. Lett., vol. 74, 1999, pp. 762-764.
    連結:
  13. [16] P. D. Dapkus, "Metalorganic chemical vapor deposition," Annu. Rev. Mater. Sci., vol. 12, 1982, pp. 243-269.
    連結:
  14. [18] B. Butun, T. Tut, E. Ulker, T. Yelboga, and E. Ozbay, "High-performance visible-blind GaN-based p-i-n photodetectors," Appl. Phys. Lett., vol. 92, 2008, p. 033507.
    連結:
  15. [19] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, "ZnO Nanowire UV Photodetectors with High Internal Gain," Nano Lett. , vol. 7, 2007, pp. 1003-1009.
    連結:
  16. [20] J. D. Prades, F. H. Ramirez, R. J. Diaz, M. Manzanares, T. Andreu, A. Cirera, A. R. Rodriguez, and J. R. Morante, "The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires," Nanotech., vol. 19, 2008, p. 465501.
    連結:
  17. [21] D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, and X. Fan, "Ultraviolet Schottky detector based on epitaxial ZnO thin film," Solid State Electron., vol. 52, 2008, pp. 679-682.
    連結:
  18. [22] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, and D. Z. Shen, "Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film," Solid State Electron. vol. 51, 2007, pp. 757-761.
    連結:
  19. [23] Y. Li, A. Paulsen, I. Yamada, Y. Koide, and J. J. Delaunay, "Bascule nanobridges self-assembled with ZnO nanowires as double Schottky barrier UV swiches," Nanotech., vol. 21, 2010, p. 295502.
    連結:
  20. [24] Auciello, Anirudha V. Sumant, "Status review of the science and technology of ultrananocrystalline diamond films and application to multifunctional devices," Diamond & Related Materials, vol.19, 2010, pp. 699-718.
    連結:
  21. [25] 盧建宏,以微波電漿噴射化學氣相沈積法動態成長大面積鑽石薄膜之研究,碩士論文,國立臺北科技大學製造科技研究所,台北,2008。
    連結:
  22. [26] B. Shi, O. Auciello, "Fundamentals of ultrananocrystalline diamond thin films as biomaterials for developmental biology: Embryonic fibroblasts growth on the surface of (UNCD) films," Diamond & Related Materials, vol.18, 2009, pp. 596-600.
    連結:
  23. [27] 鐘安泰,階段性成長鑽石膜對碳化鎢基材切銷性之研究,碩士論文,國立臺北科技大學機電整合研究所,台北,2009。
    連結:
  24. [28] I. Jan, J. Hammersberg, "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond," Science, vol. 297, 2002, pp. 1670-1672.
    連結:
  25. [29] B. R. Huang I. N. Lin, "UNCD electron emitters using Si nanostructure as a template," Vacuum, vol. 84, 2010, pp. 111-114.
    連結:
  26. [30] W.H. Liao, D.H. Wei, C.R. Lin., "Synthesis of highly transparent ultrananocrystalline diamond films from a lowpressure, low-temperature focused microwave plasma jet," Nanoscale Res. Lett. 2012, 7, p. 82.
    連結:
  27. [32] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz,and M. Razeghi, "High-speed, low-noise metal-semiconductor-metal ultraviolet photo-detectors based on GaN," Appl. Phys., Lett. 74, 1999, pp. 762-764.
    連結:
  28. [33] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M.Razeghi, "Visible blind GaN p-i-n photodiodes," Appl. Phys. Lett., vol. 72, 1998, pp. 3303-3305.
    連結:
  29. [34] B. Butun, T. Tut, E. Ulker, T. Yelboga, and E. Ozbay, "High-performancevisible-blind GaN-based p-i-n photodetectors," Appl. Phys. Lett., vol. 92, 2008, p. 033507.
    連結:
  30. [35] H.J. Looi and M.D. Whitfield et al, "Metal–semiconductor–metal photodiodes fabricated from thin-film diamond," Appl. Phys. Lett., vol.74, 1999, pp. 3332-3334.
    連結:
  31. [36] L. Thaiyotin and E. Ratanaudompisut, "UV photodetector from Schottky diode diamond film," Diam. Relat. Mat., vol.11, 2002, pp. 442-445.
    連結:
  32. [37] R.D. McKeag and S.S.M. Chan, "Polycrystalline diamond photoconductive device with high UV-visible discrimination," Appl. Phys. Lett., vol.67, 1995, pp. 2117-2119.
    連結:
  33. [38] S.G. Wang and Q. Zhang, "Diamond-based alpha particle detectors with coplanar geometry," Diam. Relat. Mat., vol.12, 2003, pp. 682-686.
    連結:
  34. [39] S. Salvatori and M.C. Rossi et al., "High-temperature performances of diamond-based UV-photodetectors," Diam. Relat. Mat., vol.9, 2000, pp. 982-986.
    連結:
  35. [40] E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultravioletphotodetectors," Semicond. Sci. Tech., vol. 18, 2003, p. R33.
    連結:
  36. [41] E. Janczak-Bienk, H. Jensen and G. Sorensen, "The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films," Mater. Sci. and Eng. vol. A140, 1991 pp. 696-701.
    連結:
  37. [44] B. Shi, O. Auciello, "Fundamentals of ultrananocrystalline diamond thin films as biomaterials for developmental biology: Embryonic fibroblasts growth on the surface of films," Diamond & Related Materials, vol. 18, 2009, pp. 596-600.
    連結:
  38. [45] M. Tsuda, M. Nakajima and S. Oikawa, "The Importance of the Positively Charged Surface for Epitaxial Growth of Diamonds at Low Pressure," Jpn. J. Appi. Phys., vol. 26, No. 5, 1987, p. 527.
    連結:
  39. [46] R. J. Nemanich, J. T. Glass, G. Lucovsky, R. E. Shroder, "Raman scattering characterization of carbon bonding in diamond and diamondlike thin films," Journal of Vacuum Science & Technology. A, vol. 6, Issue 3, 1988, pp. 1783-1787.
    連結:
  40. [47] M. S. Dresselhaus, G. Dresselhaus, and R. Sait, "Physics of carbon nanotubes," Carbon, vol.33, 1995, pp. 883-891.
    連結:
  41. [48] Hall, H. T, "Ultra-high pressure apparatus". Rev. Sci. Instr, vol.3, No. 2, 1960, pp. 125-131.
    連結:
  42. [54] B. V. Spitsyn, l.L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surfaces," Journal of Crystal Growth, 52, pp. 219-226.
    連結:
  43. [55] V. Shanov, R. N. Singh et al, "CVD diamond coating for erosion protection at elevated temperatures," J. Mater. Eng. Perform., vol.11, 2002, pp. 220-225.
    連結:
  44. [56] P. K. Bachmann, "Microwave plasma CVD and related technique for low pressure diamond systhesis in thin film diamond," London: Chapman and Hall, 1994.
    連結:
  45. [57] M. Kamo, Y. Sato, S. Matsumoto, N. Setaka, "Diamond synthesis from gas phase in microwave plasma," J. Cryst. Growth, vol.62, 1983, pp. 642-644.
    連結:
  46. [58] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, X. Pan, "Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions," Appl. Phys. Lett, Vol. 64, 1994, p. 1502.
    連結:
  47. [59] P. K. Bachmann and D. Leets et al., "Towards a general concept of diamond chemical vapour deposition," Diam. Relat. Mat., vol.1, 1991, pp. 1-12.
    連結:
  48. [60] P.K. Bachmann and W.V. Enckevort, "Diamond deposition technologies," Diam. Relat. Mat., vol.1, 1992, pp. 1021-1034.
    連結:
  49. [61] D. Zhou , T. G. McCauley, L. C. Qin., A. R. Krauss , D. M. Gruen, "Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma," J. Appl. Phys., vol. 83, No. 1, pp. 540-543
    連結:
  50. [62] Ma Ying, Wang Linjun, Liu Jianmin, Lou Yanyan and Xia Yiben, "Latest progress in fabrication of ultraviolet detectors with diamond films grown by chemical vapor deposition,"Chinese Journal of Vacuum Science and Technology, vol. 26, No. 6, 2006, pp. 475-481.
    連結:
  51. [68] M. J. Rand, "Plasma-promoted deposition of thin inorganic films," J. Vac. Sci. Technol, vol. 16, 1979, p. 420.
    連結:
  52. [69] H. Liu, David S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond & Related Materials, vol. 4, 1995, pp. 1173-1188.
    連結:
  53. [70] R. Shima, Y. Chakk, A. Hoffman, "Influence of Ti, Fe, and Cu metal submicron-particles on diamond CVD on Si substrates," Carbon, vol.38, 2000 pp. 1839-1843.
    連結:
  54. [71] Stoner, B. R., G. H. M. Ma, S. D. Wolter and J. T. Glass, "Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy," Physical Review B, vol.45(19), 1992, pp. 11067-11084.
    連結:
  55. [72] Kasper 0. Schweitz, Ralf B. Schou-Jensen, "Ultrasonic pre-treatment for enhanced diamond nucleation," Diamond and Related Materials vol.5, 1996, pp. 206-210.
    連結:
  56. [73] Q. H. Fan, A. Fernandes, E. Pereira and J. Gracio, "Adherent diamond coating on copper using an interlayer," Vacuum, vol.52, 1999, pp. 193-198.
    連結:
  57. [74] H. Zhou, M. Nagatsu, "Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition," Diamond & Related Materials vol.16, 2007, pp. 675-378.
    連結:
  58. [75] C. S. Wang, I.N. Lin, "Effect of N2 addition in Ar plasma on the development of icrostructure of ultra-nanocrystalline diamond films," Diamond & Related Materials, vol.19, 2010, pp. 147-152.
    連結:
  59. [76] 廖文祥,以微波電漿噴射化學氣相沉積系統合成超奈米晶鑽石膜之研究, 碩士論文,國立臺北科技大學機電整合研究所,台北,2009。
    連結:
  60. [77] H. Liu, David S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond & Related Materials, vol.4, 1995, pp. 1173-1188.
    連結:
  61. [80] H. Liu, David S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond & Related Materials, vol.4, 1995, pp. 1173-1188.
    連結:
  62. [81] Chii-Ruey Lin, Wen-Hsiang Liao, Da-Hua Wei, Chien-Kuo Chang, Wei-Chuan Fang, Chi-Liang Chen, Chung-Li Dong, Jeng-Lung Chen, and Jing-Hua Guo, "Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition," Journal of Crystal Growth, vol.20, 2011, pp. 212-217.
    連結:
  63. [82] Klingenstein, M., Kuhl, J., Rosenzweig, J., Moglestue, C., Hulsmann, A., Schneider, Jo., Kohler, K., "Photocurrent gain mechanisms in metal-emiconductor-metal photodetectors ," Solid-State Electronics, vol. 37, No. 2, 1992 , pp. 333-340.
    連結:
  64. [84] R.Paul, "Hydrophobicity in DLC films prepared by electrodeposition technique," Applied Surface Science, vol. 255, 2008, pp. 1705-1711.
    連結:
  65. [85] E. Janczak-Bienk, H. Jensen and G. Sorensen, "The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films," Mater. Sci. and Eng., vol. A140, 1991, p. 696.
    連結:
  66. [86] C. R. Lin, W. H. Liao, D. H. Wei, J. S. Tsai, C. K. Chang, W. C. Fang , "Formation of ultrananocrystalline diamond films with nitrogen addition," Diamond & Related Materials, vol. 20. 2011, pp. 380-384.
    連結:
  67. [87] S. Bhattacharyya, "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films," Appl. Phys. Let., vol. 79, 2001, pp. 1441-1443.
    連結:
  68. [88] A.K.M.S Chowdhury, "Bonding structure in carbon nitride films: variation with nitrogen content and annealing temperature," Surface and Coatings Technology, vol. 112, 1999, pp. 133-139.
    連結:
  69. [89] Gareth M, "Structural characterization of CNX thin films deposited by pulsed laser ablation," Diamond and Related Materials, vol. 12, 2003, pp.1049-1054.
    連結:
  70. [90] J.T. Titantah, "Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles," Diamond and Related Materials, vol. 16, 2007, pp. 581-588.
    連結:
  71. [91] E. Cappellia, "Carbon nitride films by RF plasma assisted PLD: Spectroscopic and electronic analysis," Applied Surface Science, vol. 257, 2011, pp.5175-5180.
    連結:
  72. [92] K. L. Ma, J. X. Tang, "Photoemission spectroscopic study of nitrogen-incorporated nanocrystalline diamond films, "Appl. Phys. Lett., vol. 90, 2007, pp. 092105-1~ 092105-3.
    連結:
  73. [93] Michael Sternbergt, Peter Zapol, Thomas Frauenheimt, John Carlislel, Dieter M. Gruen, Larry A. Curtissl, " Density Functional Based Tight Binding Study of C2 and CN Deposition on (100) Diamond Surface," Materials Research Society, vol. 675, 2001, p. WI2.11.1.
    連結:
  74. [95] 劉定彥,奈米鑽石輔助高效能紫外光感測器之設計及性能, 碩士論文,國立臺北科技大學機電整合研究所,台北,2013。
    連結:
  75. [96] X. A. Cao, J. A. Teetsov, F. S. Sandvik, S. D. Arthur, "Microstructural origin of leakage current in GaN/InGaN light-emitting diodes," Journal of Crystal Growth, vol. 264, no. 1, 2004, pp. 172-177.
    連結:
  76. [1] International Standard ISO 21348, "Space Environment (natural and artificial)-Process for determining solar irradiances," No. ISO 21348:2007, 2007, p. 9.
  77. [2] S. M. Sze, Semiconductor devices: Physics and technology, New York: John Wiley & Sons, 1985.
  78. [4] L. Robyn, M. Michael, Tony, Smith, Wayne, Armstrong, Bruce, "Solar Ultraviolet Radiation: Global burden of disease from solar ultraviolet radiation," Environmental Burden of Disease Series 13, World Health Organization, 2006, p. 78
  79. [17] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, "Visible blind GaN p-i-n photodiodes," Appl. Phys. Lett., vol. 72, 1998, pp. 3303-3305.
  80. [31] J. J. Zhou, R. L. Jiang, X. L. Ji, B. Wen, P. Chen, S. J. Chua, R. Zhang, B. Shen, and Y. D. Zheng, "Effects of the Polarization Fields on the Responsivity of the AlN/GaN Photodetectors," Semi. Insu. Mat., 13th International Conference, 2004, pp. 281-283.
  81. [42] Schubert F. Soares, "Photoconductive gain in a Schottky barrier photodiode," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 31 (2 A), 1992, pp. 210-216.
  82. [43] Z. S. Zhen, Xie Baosen, "The investigationand preparationofthe photoelectric flat display device," Optoelectronic technology, vol. 23, 2003, No.3.
  83. [49] Bundy, F. P., Hall, H. T., Strong, H. M. and Wentorf, R. H., Hall; Strong, Wentorf, "Man-made diamonds". Nature, vol.176, No. 4771, 1955, p. 51.
  84. [50] Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. and Wentorf, R. H., Bundy; Hall, Strong, Wentorf, "Preparation of diamond," Nature, vol.184, No. 4693, 1959, p. 1094.
  85. [51] S. E. Chen, H. H. Li, J. I. Pang, "The advance of luminescence dating," Journal of Northwest University, vol. 33, no. 2, 2003, pp. 209-212.
  86. [52] W. G. Eversole, U.S. Patent, 1962, No. 3,030,188.
  87. [53] J.E. Field, "The properties of diamond," Academic press, London, 1979.
  88. [63] 蔡育勳,科儀新知,第十二卷,第一期,1990。
  89. [64] 阿部東彥,家田正之,電漿化學,高正雄譯,復漢出版社,1984,第二章。
  90. [65] D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Habdbook of Surface Engineering, London: Blackie & Son Ltd., 1991, p. 196.
  91. [66] B. Chapman, ed., Glow Discharge Process, New York: John Wiley & Sons, 1980, Chap 2, p. 46.
  92. [67] J. L. Vossen and W. Kern, eds., Thin Film Processes, New York: Academic press, 1978. Part II, p. 24.
  93. [78] S. M. Sze, Semiconductor devices: Physics and technology, New York: John Wiley &Sons, 1985.
  94. [79] D. A. Neamen, "Semiconductor physics and devices: basic principles," McGraq-Hill, 2003.
  95. [83] 黎兵,現代材料分析技術,北京:國防工業出版社, 1998,第188頁。
  96. [94] K. J. Sankaran, J. Kurian, H. C. Chen, C. L. Dong, C. Y. Lee, N. H. Tai, I. N. Lin, "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma," J. Phys. D: Appl. Phys, vol. 45, 2012, p. 365303.