Title

奈米級氧化鋅/氧化鈦熔射塗層光催化特性之研究

Translated Titles

Study on Photocatalytic Properties of Nano Structural ZnO/TiO2 Thermal Sprayed Coatings

Authors

盧進德

Key Words

熔射製程 ; 氧化鋅 ; 氧化鈦 ; 噴霧造粒 ; 光催化 ; 亞甲基藍 ; Thermal spray ; Zinc oxide ; Titanium dioxide ; Spray dry ; Photocatalysis ; Methylene blue

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

蘇程裕

Content Language

繁體中文

Chinese Abstract

光催化係屬於高級氧化程序中的一環,常見的光觸媒材料為TiO2、ZnO、CdS、WO3、SnO2及Fe2O3等,以TiO2與ZnO最為廣泛研究。由於光觸媒材料應用上最大的困難為光觸媒的固定化技術,利用熔膠凝膠法、濺鍍法或燒鍍法較難製備大面積的塗層。本研究係利用電漿與高速火焰熔射技術,分別將ZnO、TiO2、ZnO/3wt%Al2O3及ZnO/50wt%TiO2奈米結構材料噴覆於AISI304不繡鋼基板表面,針對氧化鋅/氧化鈦及其複合粉末利用UV光(352nm)降解亞甲基藍水溶液之光催化特性進行研究。研究結果顯示熔射後塗層表面形貌多為奈米結構,熔射ZnO/3wt%Al2O3之塗層其表面形貌多為奈米片狀(nano disk)氧化鋅,熔射過程發現添加氧化鋁能有效提高氧化鋅塗層堆疊效率;X射線繞射(XRD)分析顯示熔射ZnO/3wt%Al2O3之塗層其特徵峰向右偏移,表示鋁可能有摻雜進氧化鋅結構,高速火焰熔射ZnO/50wt%TiO2塗層其相態多為ZnO 與TiO2之複合相(Zn2Ti3O8及Zn2TiO4),電漿熔射塗層除了複合相外,增加了Ti8O15缺氧相,純TiO2塗層因熔射高溫其Anatase相大都轉變為Rutile相。光催化特性顯示,經UV光照24小時,能將亞甲基藍水溶液降解為透明水溶液,高速火焰熔射TiO2塗層光照12小時降解率為100%,而電漿熔射ZnO/3wt%Al2O3塗層降解效率最差為45%。綜合分析結果顯示,塗層表面結構與光觸媒材料影響光催化降解率,進行降解亞甲基藍水溶液,TiO2塗層較ZnO塗層效率佳,添加氧化鋁於氧化鋅粉末中,能增強熔射時堆疊效率,但經電漿熔射後其光催化效率降低,塗層中產生TiO2缺氧相會因氧空缺形成電子電洞再結合中心,導致其光催化效率較差,高速火焰熔射塗層均較電漿熔射塗層之光催化效果佳。

English Abstract

Among the many photocatalysts, such as TiO2, ZnO, CdS, and WO3, TiO2 and ZnO are known to be the best photocatalyst in terms of its chemical stability. In this study, Nano ZnO, TiO2, ZnO/3wt%Al2O3, and ZnO/50wt%TiO2 photocatalytic coating were deposited on stainless steel 304 by thermal spraying process(APS and HVOF). The photocatalytic properties was evaluated by using methylene blue(MB) aqueous soiution by UV light(352nm). The results showed that the microstructure of ZnO/3wt%Al2O3 coating were nano disk, thermal sprayed powder filled Al2O3 can improve deposition rate; XRD results indicate that phase of TiO2 coating was transformed of anatase to rutile. The phase of HVOF ZnO/50wt%TiO2 coating formed compound phase (Zn2Ti3O8 and Zn2TiO4) and APS ZnO/50wt%TiO2 coating formed Ti8O15. When the HVOF TiO2 coating by UV-illuminated 12 hours, degenerate rate was 98% and APS ZnO/3wt%Al2O3 coating was 46%. The photocatalytic properties of TiO2 coating were higher than others coating (ZnO coating, ZnO/50wt%TiO2 coating and ZnO/3wt%Al2O3 coating). HVOF coating were higher than APS coating.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [1] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” nature, vol. 238, 1972, pp. 37-38.
    連結:
  2. [4] Z. Zhang, C. C. Wang, R. Zakria and J. Y. Ying, “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts,” Journal of Physical Chemistry B, vol. 102, 1998, pp. 10871-10878.
    連結:
  3. [6] S. B. Mishra, S. Prakash and K. Chandra, “Studies on erosion behavior of plasma sprayed coatings on a Ni-based superalloy,” Wear, vol. 260, 2000, pp. 422-432.
    連結:
  4. [7] W. A. Saywell, “Thermal Spray Industry Continues to Develop,” Metal Powder Report, vol. 51, 1996, pp. 34-37.
    連結:
  5. [8] Y. Zeng. G. F. Cheng, M. Wen and W. Wu, “Effect of external bias voltage and coating thickness on the photocatalytic activity of thermal sprayed TiO2 coating,” Progress in Organic Coatings, vol. 61, 2008, pp. 321-325.
    連結:
  6. [9] H. Chen, S. W. Lee, T. H. Kim and B. Y. Hur, “Photocatalytic decomposition of benzene with plasmas prayed TiO2-based coatings on foamed aluminum,” Journal of the European Ceramic Society, vol. 26, 2006, pp. 2231-2239.
    連結:
  7. [10] G. J. Yang, C.J. Li, F. Han and A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films, vol. 466, 2004, pp. 81-85.
    連結:
  8. [11] C. Lee, H. Choi, C. Lee and H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology, vol. 173, 2003, pp. 192-200.
    連結:
  9. [12] 賴信穎,二氧化鈦添加氫氧基磷灰石對水中污染物光分解之效應,碩士論文,成功大學,台南,2007。
    連結:
  10. [13] J. He, M. Ice, S. Dallek and E. J. Lavernia, “Synthesis of Nanostructured WC-12 Pet Co Coating Using Mechanical Milling and High Velocity Oxygen Fuel Thermal Spraying,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 31, 2000, pp. 541-553.
    連結:
  11. [14] B. S. Schorr, K. J. Stein and A. R. Marder, “Characterization of Thermal Spray Coatings,” Materials Characterization, vol. 42, 1999, pp. 93-100.
    連結:
  12. [17] E. Pfender, “Fundamental Studies Associated with the Plasma Spray Process,” Proceedings of the National Thermal Spray Conference, 1987, pp. 1-10.
    連結:
  13. [18] S. Steinhäuser, B. Wielage, U. Hofmann, T. Schnick, A. Ilyuschenko and T. Azarova, “Plasma-sprayed wear-resistant coatings with respect to ecological aspects,” Surface & Coatings Technology, Vol. 131, 2000, pp. 365-371.
    連結:
  14. [19] E. Dongmo , M. Wenzelburger and R. Gadow, “Analysis and optimization of the HVOF process by combined experimental and numerical approaches,” Surface & Coatings Technology, vol. 202, 2008, pp. 4470-4478.
    連結:
  15. [23] F. L. Toma, G. Bertrand, S. O. Chwa, D. Klein, H. Liao, C. Meunier and C. Coddet, “Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2–Al coatings elaborated by HVOF spraying for the nitrogen oxides removal,” Materials Science and Engineering, vol. 417, 2006, PP. 56-62.
    連結:
  16. [24] Y. C. Nah, I. Paramasivam, and P. Schmuki, “Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications,” ChemPhysChem, vol. 11, 2010, pp. 2698-2713.
    連結:
  17. [27] M. Bizarro, A. S.Arzate, I. G. Wilches, J.C. Alonso and A. Ortiz, “Synthesis and characterization of ZnO and ZnO:Al by spray pyrolysis with high photocatalytic properties”, Catalysis Today, vol. 166, 2011, pp. 129–134.
    連結:
  18. [28] A. Kafizas, S. Kellici, J. A. Darr, I. P. Parkin, “Titanium dioxide and composite metal/metal oxide titania thin films on glass: A comparative study of photocatalytic activity,” Journal of Photochemistry and Photobiology A: Chemistry, vol.204, 2009, pp. 183–190.
    連結:
  19. [29] P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, “Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes,” Catalysis Communications, vol, 10, 2009, PP. 1380–1385.
    連結:
  20. [30] 陳皇翰,利用可見光探討銀沉積於奈米氧化鋅的光催化活性,碩士論文,成功大學,台南,2005。
    連結:
  21. [31] 曾展晧,以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,碩士論文,成功大學,台南,2005。
    連結:
  22. [32] H. Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan, J. Yao, L. Xiao and G.M. Zeng, “Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation,” Desalination, vol. 286, 2012, pp. 41–48.
    連結:
  23. [33] F. Ye and A. Ohmori, “The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings,” Surface & Coatings Technology, vol. 160, 2002, pp. 62-67.
    連結:
  24. [34] A. Bojinova, R. Kralchevska, I. Poulios and C. Dushkin, “Anatase/Rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry,” Materials Chemistry and Physics, vol. 106, 2007, pp. 187-192.
    連結:
  25. [35] F. X. Ye, A. Ohmori, T. Tsumura, K. Nakata and C. J. Li, “Microstructural Analysis and Photocatalytic Activity of Plasma-Sprayed Titania-Hydroxyapatite Coatings,” Journal of Thermal Spray Technology, vol, 16, 2007, pp. 776–782.
    連結:
  26. [36] 傅冠中,微/奈米氧化鋁/氧化鈦熔射塗層之噴覆與特性研究,碩士論文,台北科技大學,台北,2010 。
    連結:
  27. [41] F. Iskandar, L. Gradon and K. Okuyam, “Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol,” Journal of Colloid and Interface Science, vol. 265, 2003, pp. 296-303.
    連結:
  28. [42] J. W. Walker, J. S. Reed and S. K. Verma, “Influence of Slurry Parameters on the Characteristics of Spray-Dried Granules,” Journal of the American Ceramic Society, vol. 82, 1999, pp. 1711-1719.
    連結:
  29. [43] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht and M. A. El-Sayed, “Some properties of spherical and rod-shaped semiconductor and metal nanocrystals,” Pure and Applied Chemistry, Vol. 74, 2002, PP. 1675-1692.
    連結:
  30. [44] P. Ball, and L. Garwin, “Science at the atomic scale,” Nature, vol. 355, 1992, pp. 761-766.
    連結:
  31. [45] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, 1996, pp. 933-937.
    連結:
  32. [46] R. Rossetti, S. Nakahara and L. E. Brus, “Quantum size effect in the redox potentials resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” Journal of Chemical Physics, Vol. 79, 1983, pp. 1086-1088.
    連結:
  33. [47] J. Y. Kim, C. S. Kim, H. K. Chang and T. O. Kim, “Effects of ZrO2 addition on phase stability and photocatalytic activity of ZrO2/TiO2 nanoparticles,” Advanced Powder Technology, vol. 21, 2010, pp. 141-144.
    連結:
  34. [48] 莊家評,二氧化鈦的表面修飾及其在染料敏化太陽能電池的應用,碩士論文,成功大學,台南,2008。
    連結:
  35. [49] 彭湘育,二氧化鈦的改質及可見光光催化反應與染料敏化太陽能電池的應用,碩士論文,台北科技大學,台北,2010。
    連結:
  36. [50] Y. Zeng, J. T. Liu, W. Wei, J. R. Wang and S. W. Lee, “Photocatalytic performance and microstructure of thermal-sprayed nanostructured TiO2 coatings,” Ceramics International, vol. 34, 2008, pp. 351-357.
    連結:
  37. [51] M. Bozorgtabar, M. Rahimipour and M. Salehi, “Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process,” Materials Letters, vol. 64, 2010, pp. 1173-1175.
    連結:
  38. [52] G. J. Yang, C. J. Li, Y. Y. Wang and C. X. Li, “Dominant microstructural feature over photocatalytic activity of high velocity oxy-fuel sprayed TiO2 coating,” Surface & Coatings Technology, vol. 202, 2007, pp. 63-68.
    連結:
  39. [53] J. Colmenares-Angulo, S. Zhao, C. Young and A. Orlov, “The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings,”Surface & Coatings Technology, vol. 204, 2009, pp. 423-427.
    連結:
  40. [54] N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, S. Vassilev and C. Dushkin, “Photocatalytic activity of nanostructured ZnO films prepared by two different methods for the photoinitiated decolorization of malachite green,” Journal of Alloys and Compounds, vol. 500, 2010, pp. 252-258.
    連結:
  41. [57] J. J. Duan, X. H. Liu, Q. F. Han and X. Wang, “Controlled morphologies and optical properties of ZnO films and their photocatalytic activities,” Journal of Alloys and Compounds, vol. 509, 2011, pp. 9255-9263.
    連結:
  42. [58] C. F. Klingshirn, “ZnO: Material, physics and applications,” ChemPhysChem, vol. 8, 2007, pp. 782-803.
    連結:
  43. [59] 蔡忠育,氧化鋅薄膜之製備與特性分析,碩士論文,台北科技大學,台北,2009。
    連結:
  44. [60] D. Li and H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere, vol. 51, 2003, pp. 129-137.
    連結:
  45. [61] J. Rodríguez , F. Paraguay-Delgado, A. López, Julio Alarcón and W. Estrada, “Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water,” Thin Solid Films, vol. 519, 2010, pp. 729-735.
    連結:
  46. [62] M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO+Al2O3 coatings,” Surface & Coatings Technology, vol. 179, 2004, pp. 47-55.
    連結:
  47. [65] K. Ramachandran, V. Selvarajan and K. P. Screekumar, “Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings,” Thin Solid Films, vol. 315, 1998, pp. 144-151.
    連結:
  48. [66] D. Goberman, Y H. Sohn and L. Shaw, “Microstructure development of Al2O3-13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders,” Acta Materialia, vol. 50, 2002, pp. 1141-1152.
    連結:
  49. [68] 高雄醫學大學附設中和紀念醫院臨床醫學研究所,高雄,網址:http://www.kmuh.org.tw/www/clireser/。
    連結:
  50. [69] C. Y. Su, K. H. Liao, C. T. Pan and P. W. Peng, “The effect of deposition parameters and post treatment on the electrical properties of Mo thin films,” Thin Solid Films, vol. 520, 2012, pp. 5936-5939.
    連結:
  51. [72] J. Yang and J. H. Swisher, “The Phase Stability of Zn2Ti308,” Materials Characterization, vol. 37, 1996, pp. 153-159.
    連結:
  52. [73] 黃千鳴,銳鈦礦二氧化鈦的光催化活性受氧空缺存在以及機械應變影響之理論分析與模擬,碩士論文,臺灣大學,台北,2010。
    連結:
  53. [74] 劉守靜,研究奈米光觸媒之合成及處理染料之效率及降解機構,碩士論文,中山醫學大學,台中,2008。
    連結:
  54. [75] P. H. Chen and C. H. Jenq, “Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide,” Environment International, vol. 24, 1999, pp. 871-879.
    連結:
  55. [2] S. L. Kuo and C. J. Liao, “Photocatalytic disinfection of bacteria by sodium light with smectite catalysts,” Water Quality Research Journal of Canada 41, vol. 4, 2006, pp. 365-374.
  56. [3] 田中義身,光觸媒技術研討會,經濟部,2000。
  57. [5] 立天時代股份有限公司,台北,網址:http://www.arc-flash.com.tw/。
  58. [15] 蕭威典,熔射覆膜技術,全華科技圖書,2006。
  59. [16] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, New York: John Wiley & Sons, 1995, pp.79-82.
  60. [20] 王海軍,熱噴塗材料及應用,國防工業出版社,2008。
  61. [21] A. Fujishima, T. N. Rao and D. A. Tryk, “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol 1, 2000, pp. 1-21.
  62. [22] 李佳欣,二氧化鈦粉體表面吸附鎳之改質研究,碩士論文,逢甲大學,台中,2006。
  63. [25] 彭依偉,活性碳紙纖濾網塗覆奈米光觸媒分解丙酮之研究,碩士論文,中山大學,台南 ,2008。
  64. [26] 林桂芬,溶膠凝膠法製備高比表面積二氧化鈦光觸媒及其性質分析,碩士論文,台北科技大學,台北,2005。
  65. [37] 曾令可,陶瓷工業實用乾燥技術與實例,北京,化學工業出版社,2008。
  66. [38] 李嘉甄,陶瓷製程特論,台北科技大學材料所,2010。
  67. [39] 章登宏,噴霧造粒因素對粉體顆粒形成的影響,中國陶瓷, 第三十六卷,第六期,2000,第7-9頁。
  68. [40] 張建新,等離子噴塗納米結構Al2O3-13%TiO2塗層組織及性能研究,博士論文,河北工業大學,河北,2007。
  69. [55] M. Fassier, N. Chouard, C. S. Peyratout, D. S. Smith, H. Riegler, D. G. Kurth , C. Ducroquetz and M. A. Bruneaux, “Photocatalytic activity of oxide coatings on fired clay substrates,” Journal of the European Ceramic Society, vol. 29, 2009, pp. 565-570.
  70. [56] 曾士誠,礦化劑對於水熱法成長氧化鋅奈米桿之影響,碩士論文,台灣科技大學,台北,2009。
  71. [63] 林士凱,製程參數對水熱法製造氧化鋁粉末之影響,碩士論文,中華科技大學,台北,2010。
  72. [64] 汪建民,陶瓷技術手冊(下),中華民國產業科技發展協進會,中華民國粉末冶金協會,1996。
  73. [67] S. Pyne, G. P. Sahoo, D. K. Bhui, H. Bar, P. Sarkar, S. Samanta, A. Maity and A. Misra, “Enhanced photocatalytic activity of metal coated ZnO nanowires,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 93, 2012, pp. 100-105.
  74. [70] 陳建林,「鋁摻雜對ZnO׃Al薄膜结晶性能與微觀組織的影響」,中國有色金屬學報,第十九卷,第七期,2009,第1284-1288頁。
  75. [71] 黃彥霖,射頻磁控濺鍍法沉積鈦酸鋅薄膜的顯微結構與相變化,碩士論文,屏東科技大學,屏東,2008。