Translated Titles

Study on the International Product Carbon Footprint Standards and Case Validation





Key Words

溫室氣體 ; 產品環境宣告 ; 產品碳足跡 ; 迴歸分析法 ; Green House Gases (GHG) ; Environmental Product Declaration (EPD) ; Carbon Footprint of Product ; Regression analysis



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

有鑑於溫室氣體造成全球暖化對環境之破壞之問題日趨嚴重,近十餘年來,各國對此議題之關注亦越來越重視,而為達到溫室氣體管理及減量排放之目的,國際間目前已發展出數種減量機制和輔助之工具,其中產品碳足跡係利用生命週期之方法計算其溫室氣體排放量化數據,藉此幫助各企業可以重新檢視產品於各生命週期階段之減量空間,亦可達到碳揭露及產品間排放量比較之目的,幫助消費者落實綠色消費。 本研究以彙整與研析國際間已公告11種產品類別之產品環境宣告,主要係以統計迴歸分析方法,探究議題包括在產品生命週期五大階段中,產品重量及單位產品重量與碳足跡、硫足跡及能源足跡間之關連性,並研析產品總碳足跡、硫足跡與能源足跡間之相關性,以及探討產品於廢棄階段有無回收所造成之環境足跡減量差異。 分析各類產品環境宣告之統計分析結果可得知,產品重量及產品生命週期總能源消耗量皆與產品溫室氣體排放量有良好的線性相關,且大部分呈現正相關;就各生命週期階段比較而言,電子產品與非電子產品皆在原使用階段之線性廻歸方程式斜率(即單位產品重量造成之碳足跡量)普遍較高,而原物料開採階段和廢棄處理次之,意指改變單位產品重量會使得此兩階段碳排放劇增,此亦代表此三階段為重點減量之處;另發現原物料開採階段,產品重量與碳足跡間之相關性較其他四個階段為高。經由各類產品三種環境足跡間之迴歸分析結果得知,除少數類別之外,皆具有相當高之相關性,可得知產品碳足跡、硫足跡和能源足跡三者間彼此關係非常密切。而在探討產品於廢棄階段回收所造成之環境足跡減量效應方面,不計算回收減量時,產品重量愈大與各環境足跡亦愈大,而計算回收減量時,產品重量愈大與各環境足跡減量效益亦愈大顯示產品於廢棄階段回收對於溫室氣體減量管理而言,有相當可觀之效益,而研究結果發現BC(金屬罐)類別產品具有最高之減碳效益,CF類別(自動販賣機)產品之回收減碳效益較優。在SO2排放造成之環境酸化及能源消耗方面,則發現有部分類別產品在回收處理後,會增加硫足跡及能耗,顯示回收處理採用之方法及產品原物料材質之選用可作更進一步之改進。 經由本研究之資料彙整與分析,可推論所收集各類電子產品之碳足跡、硫足跡及能源足跡範圍及其與產品重量間之關聯性,以及產品三種環境足跡之合理範圍,研究成果可提供產品環保化設計與環境足跡估算之參考。

English Abstract

In recent decades climate change has become one of the biggest long-term challenges of our society. Most organizations are thinking of possible solutions to reduce their GHG emissions as part of their commitment to a sustainable business. To achieve the purpose of the reduction of GHG emissions, the international community has been developed several types of flexible reduction mechanisms and management tools. A product carbon footprint will cover the greenhouse gas emissions at each stage of the product’s life cycle. This may include extraction, production and transportation of raw materials, manufacture, distribution, end–use, and disposal/recycling. GHG emissions quantitative data of product carbon footprint can be calculated based on the life cycle method. It helps enterprises to examine and find out the GHG reduction opportunities during the whole life cycle stages and facilitates the promotion of green purchasing among business and consumers. The purpose of this study is to collect and analyze the information of environmental product declarations (EPDs) of the products that have published by Japanese Environment Management Association (JEMA). By statistical regression analysis methods, the carbon footprint, sulfur footprint, and energy footprint in the five product life cycle stages are explored and discussed on the base of product weight and unit of product weight as well as the correlation among the three footprints. The effect of the GHG reduction of various products at the recovery stage is also examined. The study results revealed that carbon footprint, sulfur footprint, energy footprint and product weight have a good linear and positive correlation among each other. The largest slopes of correlation lines between weight of product and carbon footprint were found to be at the product using stage of both electronic products, and then at extraction and disposal /recycling stages. At the recovery stage, the three footprints of products with recovering measures were larger than without recovering measures for most of the categories of products and the increment was found to be increasing with product weight. It indicates that the effectiveness of GHG reduction can be achieved by recovering actions. The categories BC and CF of products were found to be provided with larger GHG reduction than others. Interestingly, the sulfur footprint of few product categories with recovering measures were less than without recovering measures indicating that possible excess of SO2 emission could occurs at the recovering stage. The findings and results found in this study can be as references for the product designers and police decision makers for the evaluation and assessment the environmental footprint of products.

Topic Category 工程學院 > 環境工程與管理研究所
工程學 > 土木與建築工程
  1. [1] Bongaarts, J., “Population Growth and Warming”, Population and Development Rewiew, vol. 37, 1992, pp 289-319.
  2. [3] Chiang, C.L., Statistical methods of analysis, U.S., World Scientific, 2003.
  3. [6] Freedman, D.A., Statistical models, U.S., Cambridge University Press, 2009.
  4. [8] Graffin, S.R., and O’neill, B.C., “Population and Global Warming with and without CO2 Targets”, Population and environment : A journal of Interdiscipinary Studies, vol.18, 1997.
  5. [11] Herrmann, I.T., Hauschild, M.Z., “Effects of globalisation on carbon footprints of products”, CIRP Annals - Manufacturing Technology, vol. 58, no. 1, 2009, pp 13-16.
  6. [14] IEA, 2009, Key World Energy Statistics.
  7. [16] IPCC, 2007, IPCC Forth Assessment Report.
  8. [18] Iribarren, D., Hospido, A., Moreira, M.T., Feijoo, G., “Carbon footprint of canned mussels from a business-to-consumer approach. A starting point for mussel processors and policy makers”, Environmental Science & Policy, vol. 13, no. 6, 2010, pp 509-521.
  9. [20] Kaufmann, R.K., and Stern, D.I., “Evidence for Human Influence on Climate from Hemispheric Temperature Relations”, Nature, vol. 388, 1991, pp 39-44.
  10. [21] Kenny, T., Gray, N.F., “Comparative performance of six carbon footprint models for use in Ireland”, Environmental Impact Assessment Review, vol. 29, no. 1, 2009, pp 1-6.
  11. [22] Krikke, H., “Impact of closed-loop network configurations on carbon footprints: A case study in copiers”, Resources, Conservation and Recycling, vol. 55, no. 12, 2011, pp 1196-1205.
  12. [23] Laurent, A., Olsen, S.I., Hauschild, M.Z., “Carbon footprint as environmental performance indicator for the manufacturing industry”, CIRP Annals - Manufacturing Technology, vol. 59, no. 1, 2010, pp 37-40.
  13. [26] Page, G., Ridoutt, B., Bellotti, B., “Carbon and water footprint tradeoffs in fresh tomato production”, Journal of Cleaner Production, vol. 32, 2012, pp 219-226.
  14. [28] Pasqualino, J., Meneses, M., Castells, F., “The carbon footprint and energy consumption of beverage packaging selection and disposal”, Journal of Food Engineering, vol. 103, no. 4, 2011, pp 357-365.
  15. [29] Quinteiro, P., Araujo, A., Oliveira, B., Dias, A.C., Luis Arroja. L., “The carbon footprint and energy consumption of a commercially produced earthenware ceramic piece”, Journal of the European Ceramic Society, vol. 32, no. 10, 2012, pp 2087-2094.
  16. [30] Roddy, D.J., “A syngas network for reducing industrial carbon footprint and energy use”, Applied Thermal Engineering, In Press, 2012.
  17. [32] Schafer, F., Blanke, M., “Farming and marketing system affects carbon and water footprint – a case study using Hokaido pumpkin” Journal of Cleaner Production, vol. 28, 2012, pp 113-119.
  18. [33] Scipioni, A., Manzardo, A., Mazzi, A., Mastrobuono, M., “Monitoring the carbon footprint of products: a methodological proposal”, Journal of Cleaner Production, In Press, 2012.
  19. [34] Stern, D.I., Common, M.S., Barbier, E.B., “Economic Growth and Environmental Degradation : the Environmental Kuznets Curve and Sustainable Development”, World Development, vol.24, 1996, pp 151-160.
  20. [35] The Carbon Trust "Carbon Footprint: An Introduction for Organizations," 2007. http://www.carbontrust.co.uk
  21. [36] Tjan, W., Tan, R.R., Foo, D.C.Y., “A graphical representation of carbon footprint reduction for chemical processes”, Journal of Cleaner Production, vol. 18, no. 9, 2010, pp 848-856.
  22. [37] Wackernagel, M. and Rees, W.E., “Our Ecological Footprint – Reduction Human Impact of Earth”, New Society, Gbrioala Island, BC, Canada, 1996.
  23. [38] Yi L., “The Analysis on Carbon Footprint of Catering Products in High-star Hotels during Operation: Based on Investigation Conducted in parts of High-star Hotels in Ji’nan”, Energy Procedia, vol. 5, 2011, pp 890-894.
  24. [39] 丁俊元,我國產業部門CO2排放與貿易之關聯性研究-具含碳指標之建構分析,碩士論文,國立臺北大學自然資源與環境管理研究所,臺北,2009。
  25. [40] 中華民國低碳學會,2010,
  26. http://inventory16.fo.ntu.edu.tw:8081/index.php?option=com_content&view=article&id=67&Itemid=101
  27. [42] 財團法人環境與發展基金會,「ISO 14020 環境標誌與宣告系列標準」簡報資料,2001。
  28. [44] 洪孟瑛,結合SWOT與ANP之決策方法應用於結合台灣碳標簽之推行,碩士論文,國立臺北科技大學環境工程與管理研究所,臺北,2010。
  29. [48] 陳佩紋,產品碳標簽對消費者購買決策之影響,碩士論文,國立臺北科技大學環境工程與管理研究所,臺北,2010。
  30. [52] 馮君君,「能源足跡情境分析架構之研提與應用」,都市與計畫,第28卷,第1期,2001,第85-105頁。
  31. [54] 曾慶揚,企業因應全球暖化之策略研究-以石化、電子及金融保險業為例,碩士論文,國立臺北科技大學環境工程與管理研究所,臺北,2010。
  32. [57] 魏佩如,產品碳足跡計算不確定性分析之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,臺北,2010。
  33. [2] Carbon Trust, “Carbon Footprint Measurement Methodology”, The Carbon Trust, London, 2007.
  34. [4] Chou, Y.L., Statistical analysis, U.S., McGraw-Hill, 1975.
  35. [5] Crawley, M.J., Statistics : an introduction using R / Michael J. Crawley, U.S., John Wiley & Sons, 2005.
  36. [7] Global Footprint Network (GFN), "Ecological Footprint Glossary," Oakland, CA, USA, 2007. http://www.footprintnetwork.org/gfn_sub.php?content=glossary.
  37. [9] Grubb and Ellis., "Meeting the Carbon Challenge: The Role of Commercial Real Estate Owners," Users & Managers, Chicago, 2007.
  38. [10] Grubb and Ellis., "Meeting the Carbon Challenge: The Role of Commercial Real Estate Owners," Users & Managers, Chicago, 2007.
  39. [12] Hua, G., Cheng, T.C.E., Wang, S., “Managing carbon footprints in inventory management”, International Journal of Production Economics, vol. 132, no. 2, 2011, pp 178-185.
  40. [13] IBM, 2009. http://www-03.ibm.com/press/us/en/pressrelease/27936.wss
  41. [15] IPCC, 2007, Mitigation of Climate Change Report.
  42. [17] IPCC, 2007, Climate Change 2007 Synthesis Repor
  43. [19] ISAUK Research Report 07-01. Thomas Wiedmann and Jan Minx, 2007.
  44. [24] Montgomery, D.C. and Runger, G.C., Applied statistics and probability for engineers, U.S., John Wiley & Sons, 2002.
  45. [25] Mungkung, R., Gheewala, S.H., Kanyarushoki, C., Hospido, A., Werf, H., Poovarodom, N., Bonnet, S., Aubin, J., Moreira, J.M., Feijoo, G., “Product carbon footprinting in Thailand: A step towards sustainable”, Environmental Development, In Press, 2012.
  46. [27] Parliamentary Office of Science and Technology (POST), "Carbon footprint of electricity generation". POSTnote 268, Parliamentary Office of Science and Technology, London, UK, 2006. http://www.parliament.uk/documents/upload/postpn268.pdf.
  47. [31] Ross, S.M., Introduction to probability and statistics for engineers and scientist, ELSEVIER,2004.
  48. [41] 林唐裕、柯亮群,「國際低碳能源潮流下我國能源政策發展方向研析」,臺灣綜合研究院研一所。
  49. [43] 財団法人產業環境管理協會(JEMAI),2011,http://www.jemai.or.jp/japanese/privacy/index.cfm
  50. [45] 俞凱允,「迴歸診斷」簡報資料,2009。
  51. http://mail.cmu.edu.tw/~tcli/%B2%C4%A4Q%A4%AD%B3%B9.pdf
  52. [46] 陳光華、丁碧慧、陳可杰、蕭大正、馮景如合譯,Anderson, D. R., Dennis, J. 原著,統計學,臺中,滄海書局,1999。
  53. [47] 陳宏仁,「產品環保標章制度與環境宣告介紹」簡報資料,2009。
  54. [49] 陳寬裕、王正華著,論文統計分析實務 SPSS與AMOS的運用,臺北市,五南圖書出版公司,2010。
  55. [50] 黃文輝,「第三類環保標章(產品環境宣告)之應用」簡報資料,2009。
  56. [51] 黃聖傑,國際產品碳足跡標準與產業案例之研究,碩士論文,大葉大學環境工程學系碩士班,彰化,2010。
  57. [53] 馮君君,「從生態足跡關點討論臺灣地區環境資源負荷-應用投入產出分析方法」,第一屆環境與資源管理學術研討會論文集,臺北,1999,第543-560頁。
  58. [55] 經濟部能源局能源產業溫室氣體減量資訊網,2009。http://verity.erl.itri.org.tw/EIGIC/knowledge_5_detail.aspx?PostID=356
  59. [56] 楊維寧,統計學,第二版,臺北市,福懋出版社有限公司,2007。
  60. [58] 臺灣產業服務基金會,「我國碳足跡計算準則草案」,2009。
  61. [59] 臺灣產業服務基金會,「我國碳足跡計算準則與低碳會議推動策略計畫,期中報告」,2009。
  62. [60] 環保署臺灣產品碳足機資訊網,2010。http://cfp.epa.gov.tw/carbon/defaultPage.aspx
  63. [61] 環保署綠色生活資訊網,2009,http://greenliving.epa.gov.tw/GreenLife/
Times Cited
  1. 熊英芝(2016)。社區產業優質化之研究:以回收棧板產製家具過程之碳足跡評估為例。逢甲大學都市計畫與空間資訊學系學位論文。2016。1-86。