Translated Titles

Real-time Detection and Analysis of Fatigue Level



Key Words

精神疲勞 ; 心率 ; 交感/副交感神經平衡指標 ; 模糊理論 ; Mental Fatigue ; Heart Rate ; Sympathovagal Balance ; Fuzzy Theory



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

Nowadays, there are many car accidents resulting from fatigue driving. The reasons that cause fatigue driving include heavy workload, pressures, lack of exercise and regular rest. Therefore, this study aims to design and implement a system to avoid car accidents due to mental fatigue driving. The proposed system is developed based on the photoplethysmography scheme to detect the driver’s heart rate data, where ZigBee is used to wirelessly transmit data to personal computer. Next, the data is resampled by Berger algorithm and then is transformed from time domain to frequency domain by using fast Fourier transform (FFT) for successive analysis. The index of the sympathovagal balance for assessing driving mental fatigue is derived by following related standards of the European Society of Cardiology and the North American Society of Pacing. A series of experiments is conducted with 30 young males whose ages are between 22 and 24 year-old, randomly assigned to 3 groups, which are group A driving in morning period, group B driving in afternoon period, and group C driving in evening period. Each participant drives for 90 minutes then takes a rest of 30 minutes. In the experiment, each participant receives bio-signal analysis and detection every 10 minutes and fills a form for fatigue assessment. The experimental result indicates that the fatigue level increases with driving time. However, the tendency of sympathovagal balance is not always linear. Therefore, this study further employs the fuzzy theory to evaluate the fatigue level of participant. During the day time, when the fatigue level (including 5 levels) of the driver is higher than 4 or has been detected twice higher than 3, the system will alert the driver and suggest to take a rest. On the other hand, in the evening, when the fatigue level of the driver is higher than 3, the system will alert the driver and suggest to take a rest, so as to reduce the possibility of accident caused by mental fatigue driving. The results of experiments demonstrate that the system can effectively warn the driver when his/her fatigue level is higher than the threshold; thus verifying the effectiveness of the proposed system for practical application.

Topic Category 電資學院 > 電機工程系研究所
工程學 > 電機工程
  1. [4] 姚景升,“同步量測心電圖和脈波儀器之設計製作和心率變異度與血壓變異度之分析”,中原大學醫學工程學系,碩士學位論文,2002。
  2. [5] M. Nakagawara and K. Yamakoshi “A Portable Instrument for Non-Invasive Monitoring of Beat-by-Beat Cardiovascular Haemodynamic Parameters Based on the Volume-Compensation and Electrical-Admittance Method,” Medical and Biological Engineering and Computing, vol.38, no.1, pp.17-35, 2000.
  3. [6] 黃仲麟,自行車玩家生醫資訊守護神,國立臺北科技大學電腦與通訊研究所碩士論文,2009。
  4. [9] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J. Cohen, “Power Spectrum Analysis of Heart Rate Fluctuation:a Quantitative Probe of Beat-to-Beat Cardiovascular Control, ” Science, vol.213, no.10, pp.220-222, 1981.
  5. [11] F. Macor, R. Fagard, and A. Amery, “Power Spectral Analysis of RR Interval and Blood-Pressure Short-Term Variability at Rest and During Dynamic Exercise: Comparison between Cyclists and Controls,” International Journal of Sports Medicine, vol. 17, no. 3, pp. 175-181, 1996.
  6. [14] Z. Y. Li, K. Jiao, M. Chen, and C. T. Wang, “Power Spectrum Analysis of Heart Rate Variability of Driving During Simulated Driving,” Chinese Journal of Biomedical Engineering, vol. 22, no. 6, 2003.
  7. [15] Z. Y. Li, K. Jiao, M. Chen, and C. T. Wang, “Effect of Magnitopuncture on Sympathetic and Parasympathetic Nerve Activities in Healthy Drivers Assessment by Power Spectrum Analysis of Heart Rate Variability,” European Journal of Applied Physiology, pp. 404-410, 2003.
  8. [16] 梁文傑、阮約翰、林漢明、孫德銓,“模擬駕駛環境下探討駕駛者駕駛任務前後生理指標之變化”,2006年工程科技與中西醫學應用研討會大會論文集,pp. 223-228,2006。
  9. [17] W. C. Liang, J. Yuan, D. C. Sun, and M. H. Lin, “Changes in Physiological Parameters Induced by Simulated Driving Tasks: Morning VS. Afternoon Session,” Journal of the Chinese Institute of Industrial Engineers, vol. 25, no. 6, pp. 457-471, 2008.
  10. [18] S. I. Fox, “Human Physiology,” McGraw-Hill, 2004.
  11. [19] E. P. Widmaier, H. Raff, and K. T. Strang, “Human Physiology:The Mechanisms of Body Function,” McGraw-Hill, 2006.
  12. [21] 張肇峰,“利用PPG分析自然心律變異”,碩士論文,中原大學,2008。
  13. [22] 胡志彰,“以血氧濃度為基礎的肌肉疲勞評估系統初探”, 碩士論文,成功大學,2007。
  14. [25] J. G. Webster, “Design of Pulse Oximeters,” Institute of Physics Publishing, 1997.
  15. [29] E. Rogado, J. L. Garcia, R. Barea, L. M. Bergasa, and E. Lopez, “Driver Fatigue Detection System,” Proceeding of the 2008 IEEE International Conference on Robotics and Biomimetics, pp.1105-1110, 2008.
  16. [30] K. C. Bilchick and R. D. Berger, “Heart Rate Variability,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 6, June 2006.
  17. [31] K. Nakajima, T. Tamura, and H. Miike, “Monitoring of Heart and Respiratory Rates by Photoplethysmography Using a Digital Filtering Technique,” Medical Engineering & Physics, vol. 18, pp.365-372, 1996.
  18. [32] L .G. Lindberg, H. Ugnell, and P. A. Oberg, “Monitoring of Heart and Respiratory Rates Using a Fiber-Optic Sensor,” Medical and Biological Engineering and Computing, vol. 30, no. 5, 1992.
  19. [33] R. D. Berger, S. Akselrod, D. Gordon, and R. J. Cohen, “An Efficient Algorithm for Spectral Analysis of Heart Rate Variability,” IEEE Transactions on Biomedical Engineering, vol. 33, pp. 900-904, 1986.
  20. [34] 紀進鴻,“四通道生理訊號儲存與回讀系統”,碩士論文,中原大學,2001。
  21. [35] http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html, Fast Fourier Transform (FFT).
  22. [41] Z. Y. Li, C. T. Wang, F. T. Mak, and H. K. Chow, “Effects of Acupuncture on Heart Rate Variability in Normal Subjects Under Fatigue and Non-Fatigue State,” European Journal of Applied Physiology, vol. 94, no. 5-6, pp. 633-640, 2005.
  23. [43] D. Lucini, G. D. Fede, G. Parati, and M. Pagani, “Impact of Chronic Psychosocial Stress on Autonomic Cardiovascular Regulation in Otherwise Healthy Subjects,” Hypertension, vol. 46, no. 5, pp. 1201-1206, 2005.
  24. [44] A. Gundel, J. Drescher, Y. A. Spatenkl, and V. V. Polyakov, “Heart Period and Heart Period Variability During Sleep on the MIR Space Station,” European Sleep Research Society, vol. 8, pp. 37-43, 1999.
  25. [45] M. Iwanaga, A. Kobayashi, and C. Kawasaki, “Heart Rate Variability with Exposure to Music,” Biological Psychology, vol. 70, no.1, pp. 61-66, 2005.
  26. [48] O. Alyan, F. Kacmaz, O. Ozdemir, O. Maden, S. Topaloglu, C. Ozbakir, F. Metin, A. Karadede, and E. Ilkay, “Effects of Cigarette Smoking on Heart Rate Variability and Plasma N-Terminal Pro-B-Type Natriuretic Peptide in Healthy Subjects: is There the Relationship between Both Markers?,” Ann Noninvasive Electrocardiol, vol. 13, no. 2, pp. 137–144, 2008.
  27. [1] http://www.cla.gov.tw/,勞委會。
  28. [2] http://www.995.org.tw/,高雄市大客車乘客權益促進協會。
  29. [3] http://www.dls.ym.edu.tw/edu_proj.htm,陽明大學。
  30. [7] S. Hales, “Statistical Essays Vol Ⅱ:Haemostaticks,” London: Innings & Manby & Woodward, 1733.
  31. [8] K. Jiao, Z. Y. Li, M. Chen, and C. T. Wang, “Synthetic Effect Analysis of Heart Rate Variability and Blood Pressure Variability on Driving Mental Fatigue,” Journal of Biomedical Engineering, vol. 22, no.2, pp. 343-346 , 2003.
  32. [10] Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, “Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use,” European Society of Cardiology and North American Society of Pacing and Electrophysiology European Heart Journal, vol. 17, pp. 354-381, 1996.
  33. [12] V. Pichot, F. Roche, J. M. Gaspoz, F. Enjorlras, A. Antoniadis, P. Minini, F. Costes, T. Busso, J. Lacour, and J. C. Barthelemy, “Relation between Heart Rate Variability and Training Load in Middle-Distance Runners,” Medicine and Science in Sports and Exercise, vol. 32, no. 10, pp. 1729-1736, 2000.
  34. [13] 林佳皇,“腳踏車運動對高中甲組籃球運動員心率變異度之效應”,碩士論文, 輔仁大學,2005。
  35. [20] 安保徹,“不疲勞的生活”,麥田出版,2009。
  36. [23] 陳耀勳,“心率、PPG和非侵入脈搏波信號 之相關性研究”, 碩士論文,逢甲大學,2005。
  37. [24] 陳敬修,“利用非侵入式Plethysmography信號評估手術病患舒張壓變化趨勢之研究” ,碩士論文,國立中山大學,2004。
  38. [26] http://www.micromedical.co.uk/products/cardio/theory.asp, CareFusion.
  39. [27] http://www.medis-de.com/en/ppg.html, Medis.
  40. [28] M. Stanciu, D. Faur, and A. Boev, “ECG Monitoring System for the Heart Rate Variability Analysis,” 1st IMEKO TC 19 Symposium, F169, Section 10, 2007.
  41. [36] 馮國臣、趙忠賢、張宏志、溫坤禮,“模糊理論基礎與應用”,新文京開發出版,2007。
  42. [37] 張宗瀛、楊英魁,“Fuzzy控制理論、實做與應用”,全華科技圖書,2005。
  43. [38] 張兆旭,“Fuzzy淺談”,松崗電腦圖書,1993。
  44. [39] 王文俊,“認識Fuzzy”,全華科技圖書,2000。
  45. [40] http://www.nonin.com/products.asp?ID=28&sec=2⊂=9, “ipod® Digital Oximeter & Sensor All-In-One,” Nonin Medical.
  46. [42] G. Borg, “A General Scale to Rate Symptoms and Feelings Related to Problems of Ergonomic and Organizational Importance,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 30, no. 1, pp. A8-A10, 2008.
  47. [46] C. C. Fu, Y. M. Li, D. Pei, C. L. Chen, H. M. Lo, D. A. Wu, and B. J. Kuo, “Heart Rate Variability in Taiwanese Obese Children,” Tzu Chi Medical Journal, vol. 18, no. 3, pp. 199-204, 2006.
  48. [47] M. Abe, T. Kanbayashi, H. Kondo, Y. Saito, R. Aizawa, K. Nagata, T. Takemura, A. Suzuhi, and T. Shimizu, “Change of the Heart Rate Variability Components in Stroke Patients When Falling Asleep,” The Japanese Society of Sleep Research, vol. 5, no. 1, pp. 50-54, 2007.
  49. [49] S. Süfke, S. Fiedler, H. Djonlagiç, and T. Kibbel, “Continuous Analysis of Heart Rate Variability for Examination of Cardiac Autonomic Nervous System After Alcohol Intoxication,” Medizinische Klinik, vol. 104, no.7, pp. 511-520, 2009.