Title

三氧化鎢-二氧化鈦、奈米碳管結合高分子複合薄膜修飾電極的製備及電化學性質的研究

Translated Titles

Preparation, Characterization and Electroanalytical Application of WO3-TiO2, Multi-walled Carbon Nanotubes with Polymer Hybrid Film Modified Electrodes

Authors

徐姵琪

Key Words

二氧化鈦(TiO2) ; 三氧化鎢(WO3) ; 去甲腎上腺素(NEP) ; 核黃素(維他命B2 ) ; 修飾電極 ; 光電催化 ; 多層奈米碳管 ; 聚乙烯亞胺 ; 氯丙嗪官能基化多層奈米碳管 ; 聚谷胺酸 ; 普羅卡因 ; 兒茶酚 ; 電催化 ; Titanium dioxide (TiO2) ; Tungsten oxide (WO3) ; Norepinephrine (NEP) ; Riboflavin (Vitamin B2) ; Modified electrodes ; Photoelectrocatalysis ; MWCNTs ; poly(ethyleneimine) ; Chlorpromazine ; Functionalized MWCNTs ; Poly-glutamic acid ; Procaine ; Catechol ; Electrocatalysis

PublicationName

臺北科技大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

陳生明

Content Language

繁體中文

Chinese Abstract

第一部分 二氧化鈦混合不同比例的三氧化鎢成WO3-TiO2複合膜並製備在銦錫氧化物(ITO)電極上,TiO2 : WO3 = 9 : 3 (v/v)在照光條件下的電流值為5.44 mA,這個比例和其他比例比起來有較高的光催化活性,所以我們選擇這個比例做後續的實驗。在本篇研究中,用去甲腎上腺素(NEP)和核黃素(維他命B2)的電化學氧化和還原作為多功能生物感測器。二氧化鈦對分析物具有增強光電催化活性的效果,用原子力顯微鏡觀察修飾電極的表面型態,顯示出ITO上塗佈著WO3和TiO2,二氧化鈦的存在增強其負載和穩定性。電化學阻抗頻譜圖是運用擴散係數的值和經由氧化還原反應造成電子轉移動力學的一些訊息。用循環伏安法(CVs)和微分脈衝伏安法(DPVs)測定分析物,DPVs不只增加了電催化電流的線性濃度範圍,也降低了測量氧化或還原干擾的過電位。我們模擬去甲腎上腺素和核黃素同時存在的複雜的系統,在pH 7下WO3-TiO2修飾電極對真實樣品去甲腎上腺素注射劑和維他命B群錠的偵測,同樣顯示氧化和還原的電流値。 第二部分 在這篇研究中,用多層奈米碳管-聚乙烯亞胺(MWCNT-PEI)複合物修飾玻璃碳電極(GCE),製成的伏安感測器可以用來偵測氯丙嗪(CPM)。MWCNT-PEI複合物是藉由簡單的超聲震盪製備而成。使用未官能基化的MWCNT。PEI可以幫助MWCNT形成穩定分散的複合材料。電化學阻抗頻譜圖研究顯示MWCNT-PEI膜的高導電性。在電位0.7 V的pH 7 PBS中,CPM在MWCNT和 MWCNT-PEI修飾GCE電極顯示不可逆的氧化峰。MWCNT-PEI對CPM顯示優良的電分析特性,藉由微分脈衝伏安法(DPV)的偵測,可得偵測極限為10 nM,靈敏度為1.3 µA µM−1 cm−2。MWCNT-PEI膜對抗壞血酸不會顯示任何特徵峰,然而,此膜對多巴胺、尿酸、乙醯氨基苯酚和CPM在相同濃度下,有明顯且分離的特徵峰。此膜顯示好的再現性,並對真實樣品的偵測顯示明顯的性能。 第三部分 在這篇研究中,因官能基化多層奈米碳管(f-MWCNTs)和聚谷胺酸(PGA)間作用,發展了一個可以簡單、快速、靈敏且準確的偵測普魯卡因和兒茶酚的方法。PGA/f-MWCNTs修飾電極對藥品的定量和生理研究有關。循環伏安法(CVs)、電化學阻抗頻譜圖(EIS)和掃描式電子顯微鏡(SEM)用來了解修飾電極的製備過程。CVs在氧化峰電流和催化物濃度間有好的線性關係(r>0.99),普羅卡因的線性範圍在9.0×10−7– 8.3×10−5 M,兒茶酚的線性範圍在8.2×10−5– 2.3×10−4 M。計時安培法顯示普羅卡因和兒茶酚的氧化電流。由於普羅卡因和兒茶酚對PGA高度的親和力和感測高度的穩定性,使生物感測器具有好的靈敏度、可接受的再現性和穩定性。線性掃描伏安法(LSV)可以將兩種化合物的伏安峰電流分離,使我們可以同時偵測。因此,f-MWCNTs和PGA間的特別鍵結基團相結合,替生物電化學設備的製造提供了一個有效及有前景的平台。

English Abstract

Part1 The titanium dioxide (TiO2) , mixed different ratio tungsten oxide (WO3) hybrid film WO3-TiO2 was prepared on indium tin oxide (ITO) electrode. TiO2 : WO3 = 9 : 3 (v/v) group current value was 5.44 mA under irradiation conditions. This group showed highest photocatalytic activity than others, we selected to optimize us in follow-up experiment. In this paper, the electrochemical oxidation and reduction of norepinephrine (NEP) and riboflavin (Vitamin B2 ) as multi-functionalized biosensor. The TiO2 exhibited a promising enhanced photoelectrocatalytic activity towards analytes. To measure the surface morphology of the modified electrode by using atomic force microscopy (AFM) , which revealed that WO3 and TiO2 were coated on ITO. The presence of TiO2 enhances the loaded and stability. Electrochemical impedance spectroscopy (EIS) applied diffusion coefficient values and some information about the kinetics of electron transfer during the redox reactions. Cyclic voltammograms (CVs) and Differential pulse voltammetry (DPVs) were used for the determination of analytes. DPVs not only increased the electrocatalytic current linear concentration range, also lowered the overpotential to oxidation or reduction the interferences in the measurements. We simulated more complex system if both norepinephrine and riboflavin were present simultaneously. It also exhibited oxidation and reduction peaks for norepinephrine injection and B complex tablet’s real samples determination in pH 7.0 at WO3-TiO2 modified electrode. Part2 We report the fabrication of a voltammetric sensor for the determination of chlorpromazine (CPM) based on multiwalled carbon nanotube-poly(ethyleneimine) (MWCNT-PEI) composite modified glassy carbon electrode (GCE). The MWCNT-PEI composite was prepared by a simple ultrasonication method. The MWCNT was used without functionalization. Formation of composite with PEI helps MWCNT to form a stable dispersion. Electrochemical impedance spectroscopy studies reveal the high conductance of MWCNT-PEI film. CPM shows irreversible oxidation peak at MWCNT and MWCNT-PEI modified GCE in pH 7 at 0.7 V. MWCNT-PEI shows excellent electroanalytical properties towards CPM and can detect as low as 10 nM level by differential pulse voltammetry (DPV) with a sensitivity of 1.3 µA µM−1 cm−2. The MWCNT-PEI film does not show any peak for Ascorbic acid. However, it shows well defined and well separate peaks for dopamine, uric acid, p-acetamidophenol and CPM in the same solution. The fabrication method shows good reproducibility. The film shows appreciable performance in real sample analysis. Part3 In this paper, a simple, rapid, sensitive, and accurate method for detecting procaine and catechol was developed based on functionalized multi-walled carbon nanotube (f-MWCNTs) and poly-glutamic acid (PGA) interactions. For pharmaceutical quality control and physiology research was developed using a PGA/f-MWCNTs modified electrodes. Cyclic voltammetry (CVs), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) were applied to characterize the assembly process of the modified electrode. CVs of good linearity (r>0.99) between oxidation peak current and concentration was obtained in the range of 9.0 × 10−7– 8.3 × 10−5 M for procaine and 8.2 × 10−5– 2.3 × 10−4 M for catechol in pH 7.0 PBS. The amperometric results revealed that procaine and catechol, respectively, showed well-defined oxidation current. Due to the high affinity of procaine and catechol for PGA and high stability of the propounded sensing platform, the fabricated biosensor achieved ultrasensitive detection with good sensitivity, acceptable reproducibility and stability. Linear sweep voltammetry (LSV) was well separation of the current peaks for these two compounds in voltammetry enables us to simultaneously determine them. Therefore, the combination of f-MWCNT and the special binding group between PGA provides an efficient and promising platform for the fabrication of bioelectrochemical device.

Topic Category 工程學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [4] Thevenot D. R., Durst R. A., and Wilson G. S., “Electrochemical biosensors: recommended definitions and classification”, Pure Application Chemistry, 71, 2333, 1999.
    連結:
  2. [5] Scouten, W. H., Luong, J. H. T. and Brown, R.S., “Enzyme or protein immobilization techniques for applications in biosensor design”, Tibtech. 13, 178-185, 1995.
    連結:
  3. [9] P. Saber, W. Lund, Talanta, 29 (1982) 457.
    連結:
  4. [16] P. N. Bartlett, J. M. Cooper, J. Electroanal. Chem., 362 (1988) 1.
    連結:
  5. [18] J. P. Lowry, R. D. O’Neill, Electroanal., 6 (1994) 369.
    連結:
  6. [19] J. Q. Sun, J. C. Sen, Macromolecular Chemistry and Physics, 200 (1999) 840.
    連結:
  7. [22] H. O. Finklea, Electroanal. Chem. 19, Marcel Dekker, New York, 1984.
    連結:
  8. [24] A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed. Philadelphia: Saunders College Publishing, (1992)
    連結:
  9. [27] G.H. Li, S. Ciston, Z.V. Saponjic, L. Chen, N.M. Dimitrijevic, T. Rajh, K.A. Gray, Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications, J. Catal., 253 (2008) 105.
    連結:
  10. [28] S.S. Chin, K. Chiang, A.G. Fane, The stability of polymeric membranes in a TiO2 photocatalysis process, J. Membr. Sci., 275 (2006) 202.
    連結:
  11. [29] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515.
    連結:
  12. [30] L. Li, C.Y. Liu, Y. Liu, Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light, Mater. Chem. Phys., 113 (2009) 551.
    連結:
  13. [31] L. Wu, J.C. Yu, X.Z. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, J. Mol. Catal., A 244 (2006) 25.
    連結:
  14. [32] D. Robert, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications, Catal. Today, 122 (2007) 20.
    連結:
  15. [33] C. Gao, J. Li, Z. Shan, F. Huang, H. Shen, Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite, Mater. Chem. Phys., 122 (2010) 183.
    連結:
  16. [34] Q. Xiao, L. Ouyang, L. Gao, W. Jiang, One-step hydrothermal preparation and photocatalytic activity of (C, S, Sm)-tridoped mesoporous TiO2 photocatalyst under visible light irradiation, Mater. Chem. Phys., 124 (2010) 1210.
    連結:
  17. [35] G.G. Nakhate, V.S. Nikam, K.G. Kanade, S. Arbuj, B.B. Kale, J.O. Baeg, Hydrothermally derived nanosized Ni-doped TiO2: A visible light driven photocatalyst for methylene blue degradation, Mater. Chem. Phys. 124 (2010) 976.
    連結:
  18. [36] M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, On the photocatalytic activity of the sulfur doped titania nano-porous films derived via microarc oxidation, Appl. Catal. A: Gen. 389 (2010) 60.
    連結:
  19. [37] S.H. Kang, H.S. Kim, J.Y. Kim, Y.E. Sung, Enhanced photocurrent of nitrogen-doped TiO2 film for dye-sensitized solar cells, Mater. Chem. Phys., 124 (2010) 422.
    連結:
  20. [38] N. Bahadur, K. Jain, A.K. Srivastava, Govind, R. Gakhar, D. Haranath, M.S. Dulat, Effect of nominal doping of Ag and Ni on the crystalline structure and photo-catalytic properties of mesoporous titania, Mater. Chem. Phys., 124 (2010) 600.
    連結:
  21. [39] H. Wang, Z. Wang, H. Hong, Y. Yin, Preparation of cerium-doped TiO2 film on 304 stainless steel and its bactericidal effect in the presence of sulfate-reducing bacteria (SRB), Mater. Chem. Phys., 124 (2010) 791.
    連結:
  22. [40] G. Cao, Y. Li, Q. Zhang, H. Wang, Synthesis and characterization of La2O3/TiO2−xFx and the visible light photocatalytic oxidation of 4-chlorophenol, J. Hazard. Mater., 178 (2010) 440.
    連結:
  23. [41] M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, In situ growth of vanadia–titania nano/micro-porous layers with enhanced photocatalytic performance by micro-arc oxidation, Electrochim. Acta, 55 (2010) 3093.
    連結:
  24. [42] N. Xu, M. Sun, Y.W. Cao, J.N. Yao, E.G. Wang, Influence of pH on structure and photochromic behavior of nanocrystalline WO3 films, Appl. Surf. Sci. 157 (2000) 81.
    連結:
  25. [43] J.P. Chen, R.T. Yang, Roleof WO3 in mixed V2O5–WO3/TiO2 catalysts for selective catalytic reduction of nitricoxide with ammonia, Applied Catalysis A: General, 80 (1992)135.
    連結:
  26. [44] S.K. Deb, Opportunities and challenge sinscience and technology of WO3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells, 92 (2008) 245.
    連結:
  27. [45] G.A. Niklasson, C.G.Granqvist, Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem., 17 (2007)127.
    連結:
  28. [46] C.G. Granqvist, P.C. Lansaker, N.R. Mlyuka, G.A. Niklasson, E.Avendano, Progress in chromogenics : new results for electrochromic and ther mochro-mic materials and devices, Sol. Energy Mater. Sol. Cells, 93(2009) 2032.
    連結:
  29. [47] C.G. Granqvist, Oxide electrochromics:Why, how, and whither, Sol. Energy Mater. Sol. Cells, 92 (2008) 203.
    連結:
  30. [48] J. Zhang, J.P. Tu, X.H. Xia,Y. Qiao,Y. Lu, Anall-solid-stateelectrochromic device basedonNiO/WO3 complementary structure and solid hybrid poly-electrolyte, Sol. Energy Mater. Sol. Cells 93 (2009) 1840.
    連結:
  31. [49] O.U. Nimittrakoolchai, S. Supothina, High-yield precipitation synthesis of tungsten oxide platelet particle and its ethylene gas-sensing characteristic, Mater. Chem. Phys., 112(2008)270.
    連結:
  32. [50] E. Gyorgy, G. Socol, I.N. Mihailescu, C. Ducu, S. Ciuca, Structural and optical characterization of WO3 thin films for gas sensor applications, J. Appl. Phys., 97 (2005) 093527(3pp.).
    連結:
  33. [51] M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani,W. Ueda,R. Abe, Preparation of nano-structured crystalline tungsten (VI) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation, Chem. Commun.(2008) 6552.
    連結:
  34. [52] M. Shibuya, M. Miyauchi, Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films, Adv. Mater., 21 (2009) 1373.
    連結:
  35. [53] S. Berger, H. Tsuchiya, A. Ghicov, P. Schmuki, High photocurrent conversion efficiency in self-organized porousWO3, Appl. Phys. Lett., 88 (2006) 203119 (3 pp.).
    連結:
  36. [54] A. Hauch, A. Georg, U.O. Krasovec, B. Orel, Photovoltaically self-charging battery, J. Electrochem. Soc., 149 (2002) A1208.
    連結:
  37. [55] W.J. Li, Z.W. Fu, Nanostructured WO3 thin film as a new anode material for lithium-ion batteries, Appl. Surf. Sci., 256 (2010) 2447.
    連結:
  38. [56] A.M. de la Cruz, D.S. Martínez, E.L. Cue′llar, Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation, Solid State Sci., 12 (2010) 92.
    連結:
  39. [57] R.H. Acuña, F.P. Delgado, M.A. Albiter, J.L. Romero, R.M. Sánchez, Synthesis and characterization of WO3 nanostructures prepared by an agedhydrothermal method, Mater. Charact., 60 (2009) 932.
    連結:
  40. [58] S. Xintai, F. Xiao, Y. Li, J. Jian, Q. Sun, J. Wang, Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process, Mater. Lett., 6 (4) (2010) 1233.
    連結:
  41. [59] X.C. Song, Y.F. Zheng, E. Yang, Y. Wang, Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4, Mater. Lett., 61 (2007) 3905.
    連結:
  42. [60] X. Shen, G. Wang, D. Wexler, Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays, Sens. Actuators, B 143 (2009) 327.
    連結:
  43. [61] H.H. Nersisyan, W. Hyung, W.C. Whan, K.C. Cho, Combustion synthesis of nanostructured tungsten and its morphological study, Powder Technol., 189 (2009) 422.
    連結:
  44. [62] M. Gillet, K. Masek, E. Gillet, Structure of tungsten oxide nanoclusters, Surf. Sci. 566–568 (2004) 383.
    連結:
  45. [63] X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L.Wang, X.B. Zhao, Fastelectro- chromic properties of self-supported Co3O4 nanowire array film, Sol.Energy Mater. Sol. Energy Mater. Sol. Cells, 94 (2010) 386.
    連結:
  46. [64] B. Baloukas, J.M. Lamarre, L. Martinu, Electrochromic interference filters fabricated from dense and porous tungsten oxide films, Sol. Energy Mater. Sol. Cells 95 (2011) 807.
    連結:
  47. [65] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Electrochromic properties of porous nickel oxide thin films prepared by a chemical bath deposition, Sol. Energy Mater. Sol. Cells, 92 (2008) 628.
    連結:
  48. [66] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Electrochromism in cobalt oxide marcobowl array films prepared by electrodeposition through monolayer polystyrene sphere template, ACS Appl. Mater. Interfaces, 2 (2010) 186.
    連結:
  49. [67] X.T. Su, F. Xiao, J.L. Lin, J.K. Jian, Y.N. Li, Q.J. Sun, J.D. Wang, Hydrothermal synthesis of uniform WO3 submicrospheres using thiourea as an assistant agent, Mater. Charact., 61 (2010) 831.
    連結:
  50. [68] B. Yang, P.R.F. Barnes, W. Bertram, V. Luca, Strong photoresponse of nanostructured tungsten trioxide films prepared via a sol–gel route, J. Mater. Chem., 17 (2007) 2722.
    連結:
  51. [69] M. Deepa, A.K. Srivastava, S.N. Sharma, Govind, S.M. Shivaprasad, Micro- structural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition, Appl. Surf. Sci., 254 (2008) 2342.
    連結:
  52. [70] S. Balaji, Y. Djaoued, A.S. Albert, R.Z. Ferguson, R. Bruning, Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows, Chem. Mater., 21 (2009) 1381.
    連結:
  53. [71] Y.Z. Zhang, J.G. Yuan, J. Le, L.X. Song, X.F. Hu, Structural and electrochromic properties of tungsten oxide prepared by surfactant-assisted process, Sol. Energy Mater. Sol. Cells, 93 (2009) 1338.
    連結:
  54. [72] L. Zhuang, X. Xu, H. Shen, A study on the gasochromic properties of WO3 thin films, Surf. Coat. Technol., 167 (2003) 217.
    連結:
  55. [73] M. Zayat, R. Reisfeld, H. Minti, B. Orel, F. Svegl, Gasochromic Effect in Platinum-Doped Tungsten Trioxide Films Prepared by the Sol-Gel Method, J. Sol–Gel Sci. Technol., 11 (1998) 161.
    連結:
  56. [75] S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S. Takahashi, A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide, Sens. Actuators B: Chem., 66 (2000) 142.
    連結:
  57. [76] X.Q. Xu, H. Shen, X.Y. Xiong, Gasochromic effect of sol–gel WO3–SiO2 films with evaporated platinum catalyst, Thin Solid Films, 415 (2002) 290.
    連結:
  58. [77] U.O. Krasovec, B. Orel, A. Georg, V. Wittwer, The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst, Sol. Energy, 68 (2000) 541.
    連結:
  59. [78] B. Orel, N. Groselj, U.O. Krasovec, M. Gabrscek, P. Bukovec, R. Reisfeld, Gasochromic effect of palladium doped peroxopolytungstic acid films prepared by the sol–gel route, Sens. Actuators B, 50 (1998) 234.
    連結:
  60. [79] A.H. Yan, C.S. Xie, D.W. Zeng, S.Z. Cai, H.Y. Li, Synthesis, formation mechanism and illuminated sensing properties of 3D WO3 nanowall, J. Alloys Compd., 495 (2010) 88.
    連結:
  61. [80] L.F. Cheng, X.T. Zhang, B. Liu, H.Z. Wang, Y.C. Li, Y.B. Huang, Z.L. Du, Template synthesis and characterization of WO3/TiO2 composite nanotubes, Nanotechnology, 16 (2005) 1341.
    連結:
  62. [81] Y.C. Nah, A. Ghicov, D. Kim, P. Schmuki, Enhanced electrochromic properties of self-organized nanoporous WO3, Electrochem. Commun., 10 (2008) 1777.
    連結:
  63. [82] J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, Z.J. Zhao, J.P. Tu, Enhancedelectro- chromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers, Electrochim. Acta, 55 (2010) 6953.
    連結:
  64. [83] L. Meda, R.C. Breitkopf, T.E. Haas, R.U. Kirss, Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film, Thin Solid Films, 402 (2002) 126.
    連結:
  65. [84] R. Deshpande, S.H. Lee, A.H. Mahan, P.A. Parilla, K.M. Jones, A.G. Norman, B. To, J.L. Blackburn, S. Mitra, A.C. Dillon, Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications, Solid State Ion., 178 (2007) 895.
    連結:
  66. [85] B.B. Cao, J.J. Chen, X.J. Tang,W.L. Zhou, Growth of monoclinicWO3 nanowire array for highly sensitive NO2 detection, J. Mater. Chem., 19 (2009) 2323.
    連結:
  67. [86] W. Smith, Y.P. Zhao, Catal. Commun., 10 (2009) 1117.
    連結:
  68. [87] I. Porqueras, E. Bertran, Optical properties of Li+ doped electrochromic WO thin films, Thin Solid Films, 377-378 (2000) 8.
    連結:
  69. [88] A. Georg, W. Graf, R. Neumann, V. Wittwer, The role of water in gasochromic WO3 films, Thin Solid Films, 384 (2001) 269.
    連結:
  70. [89] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Preparation and characterization of electron beam evaporated WO3 thin films, Opt. Mater., 29 (2007) 679.
    連結:
  71. [90] H.S. Shim, J.W. Kim, Y.E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method, Sol. Energy Mater. Sol. Cells, 93 (2009) 2062.
    連結:
  72. [91] Y.S. Lin, S.S. Wu, T.H. Tsai, Electrochromic properties of novel atmospheric pressure plasma jet-synthesized-organotungsten oxide films for flexible electrochromic devices, Sol. Energy Mater. Sol. Cells, 94 (2010) 2283.
    連結:
  73. [92] J. Okumu, F. Koerfer,C. Salinga,T.P. Pedersen, M. Wuttig, Gasochromic switching of reactively sputtered molybdenumoxide films: A correlation between film properties and deposition pressure, Thin Solid Films, 515 (2006) 1327.
    連結:
  74. [93] H. Shanak, H. Schmitt, J. Nowoczin, C. Ziebert, Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations, Solid State Ionics, 171 (2004) 99.
    連結:
  75. [94] M. Stolze, D. Gogova, L.K. Thomas, Analogy for the maximum obtainable colouration between electrochromic, gasochromic, and electrocolouration in DC-sputtered thin WO3-y films, Thin Solid Films, 476 (2005) 185.
    連結:
  76. [95] S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski, Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts, Sens. Actuators B: Chem., 108 (2005) 154.
    連結:
  77. [96] A. Georg, W. Graf, R. Neumann, V. Wittwer, Stability of gasochromic WO3 flms, Sol. Energy Mater. Sol. Cells, 63 (2000) 165.
    連結:
  78. [97] M. Ranjbar, N. Tahmasebi, G.S. M.Mahdavi, A. Irajizad, Electroless plating of palladiumon WO3 films for gasochromic applications, Sol. Energy Mater. Sol. Cells, 94 (2010) 201.
    連結:
  79. [98] K.J. Stevenson, J.T. Hupp, Electrochem. Microvisualization of structural features and ion electroinsertion behavior of patterned WO3 thin films via integrated optical and atomic force microscopies, Solid-State Lett., 2 (1999) 497.
    連結:
  80. [99] Y.S. Krasnov, G.Y. Kolbasov, Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3, Electrochim. Acta, 49 (2004) 2425.
    連結:
  81. [100] J.J. Feng, J.J. Xu, H.Y. Chen, Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide, Electrochem. Commun., 8 (2006) 77.
    連結:
  82. [101] B. Yang, H. Li, M. Blackford, V. Luca, Novel low density mesoporous WO3 films prepared by electrodeposition, Curr. Appl. Phys., 6 (2006) 436.
    連結:
  83. [102] W.C. Hsu, C.C. Chan, C.H. Peng, C.C. Chang, Hydrogen sensing characteristics of an electrodeposited WO3 thin film gasochromic sensor activated by Pt catalyst, Thin Solid Films, 516 (2007) 407.
    連結:
  84. [103] W. Wei, Q. Yu, J. Lian, J. Bao, Z. Liu, S.S. Pei, Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition, J. Cryst. Growth, 312 (2010) 3147.
    連結:
  85. [104] M. Gillet, R. Delamare, E. Gillet, Growth of epitaxial tungsten oxide nanorods, J. Cryst. Growth, 279 (2005) 93.
    連結:
  86. [105] K.A. Michalow, A. Heel, A. Vital, M. Amberg, G. Fortunato, K. Kowalski, T.J. Graule, M. Rekas, Effect of Thermal Treatment on the Photocatalytic Activity in Visible Light of TiO2-W Flame Spray Synthesised Nanopowders, Top Catal., 52 (2009) 1051.
    連結:
  87. [106] K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity, Appl. Catal. B: Environ., 79 (2008) 53.
    連結:
  88. [107] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B: Environ., 91 (2009) 397.
    連結:
  89. [108] C.F. Lin, C.H. Wu, Z.N. Onn, Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems, J. Hazard. Mater., 154 (2008) 1033.
    連結:
  90. [109] K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, W.I. Lee, Preparation of Transparent Particulate MoO3/TiO2 and WO3/TiO2 Films and Their Photocatalytic Properties, Chem. Mater., 13 (2001) 2349.
    連結:
  91. [110] J.H. Pan, W.I. Lee, Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties, Chem. Mater., 18 (2006) 847.
    連結:
  92. [114] I. F. S. Chagonda and J. S. Millership, Analyst, 113 (1988), 233.
    連結:
  93. [115] C. M. Davis and C. A. Harrington, J. Chromatogr. Sci., 22 (1984) 71.
    連結:
  94. [117] D. Kollmorgen and B. Kraut, J. Chromatogr. B, 707 (1998) 181.
    連結:
  95. [121] J. M. Calatayud and C. G. Benito, Anal. Chim. Acta, 256 (1992) 105.
    連結:
  96. [123] Y. Ni, L. Wang, S. Kokot, Anal. Chim. Acta, 439 (2001) 159.
    連結:
  97. [125] K. Murakami, T. Ueno, J. Hijikata, J. Chromatogr., 227 (1982) 103.
    連結:
  98. [127] M. H. Parvin, Electrochem. Commun., 13 (2011) 366-369.
    連結:
  99. [129] M. A. Karimi, A. H. Mehrjardi, M. M. Ardakani, R. B. Ardakani, M. H. Mashhadizadehd and S. Sargazi, Russian Journal of Electrochemistry, 47 (2011) 34–41.
    連結:
  100. [131] J. Zhang, L. Gao, Mater Lett., 61 (2007) 3571–3574.
    連結:
  101. [137] U. Yogeswaran, S. M. Chen, Electrochim. Acta, 52 (2007) 5985.
    連結:
  102. [139] M. D. Rubianes, G.A Rivas, Electrochem Commun, 9 (2007) 480–484.
    連結:
  103. [143] E. Katz, I. Willner and Electroanal., 15 (2003) 913.
    連結:
  104. [160] K.C. Lin, T.H. Tsai, S.M. Chen, Biosensors and Bioelectronics, 26 (2010) 608.
    連結:
  105. [162] S.A. Kumar, S.L. Chen, S.M. Chen, Electrochemical and Solid-State Letters, 13 (2010) K83.
    連結:
  106. [165] S. Iijima, Nature, 354 (1991) 56.
    連結:
  107. [174] Y. Lin, A.M. Rao, B. Sadanadan, E.A. Kenik, Y.P. Sun, Journal of Physical Chemistry B, 106 (2002) 1294.
    連結:
  108. [176] D. Srivastava, C. Wei, K. Cho, Applied Mechanics Reviews, 56 (2003) 215.
    連結:
  109. [177] C. Wei, D. Srivastava, K. Cho, Nano letters, 4 (2004) 1949.
    連結:
  110. [179] J. Wang, Y. Lin, Trends in Analytical Chemistry, 27 (2008) 619.
    連結:
  111. [180] M. Kunioka, Applied Microbiology and Biotechnology, 47 (1997) 469.
    連結:
  112. [181] T. Candela, A. Fouet, Molecular Microbiology, 60 (2006) 1091.
    連結:
  113. [182] R. Thangamuthu, Y.C. Pan, S.M. Chen, Electroanalysis, 22 (2010) 1812.
    連結:
  114. [186] C. Li, Advanced Drug Delivery Reviews, 54 (2002) 695.
    連結:
  115. [193] F. von Goeler, M. Muthukumar, Macromolecules, 28 (1995) 6608.
    連結:
  116. [194] P. Pincus, Macromolecules, 24 (1991) 2912.
    連結:
  117. [204] M. Moniruzzaman, K.I. Winey, Macromolecules, 39 (2006) 5194.
    連結:
  118. [205] P.G. Fenga, N. R. Stradiotto, Electroanalysis, 22 (2010) 2979.
    連結:
  119. [209] D.M. Zhao, X.H. Zhang, L.J. Feng, L. Jia, S.F. Wang, Colloids and Surfaces B: Biointerfaces, 74 (2009) 317.
    連結:
  120. [213] M.J. Sever, J.J. Wilker, Dalton Transactions, (2004) 1061.
    連結:
  121. [218] S. Murakami, N. Aoki, Biomacromolecules, 7 (2006) 2122.
    連結:
  122. [220] P.G. Fenga, N.R. Stradiotto, Journal of Solid State Electrochemistry, 15 (2011) 1279.
    連結:
  123. [1] 黃炳照、莊睦賢,電化學感測器,化工技術(第七卷第二期),(1999)。
  124. [2] 陳詩喆,電流式葡萄糖生物感測器之製備及測試,國立台灣科技大學化學工程研究所碩士論文,(2009)。
  125. [3] 王宗興,分子辨識與感測器http://www.chemedu.ch.ntu.edu.tw/lecture/molecular/2.htm,(2001)。
  126. [6] J.Clark, C.Lyons, Annals of the New York Academy of Sciences, 102 (1962) 29
  127. [7] B.Danielsson, K. Mosbach, Oxford University Press:New York.,1989.
  128. [8] A.Sternesjo, Anal. Chem., 226(1995) 175.
  129. [10] J. Wang, D. L. Hutchins-Kumar, Anal. Chem., 58 (1986) 402.
  130. [11] R. P. Baldwin, Thomsen, K. N. Talanta, 38 (1991) 1.
  131. [12] R. W. Murray, A. G.. Ewing, R. A. Durst, Anal. Chem., 59 (1987) 379.
  132. [13] B. F. Watkins, J. R. Behling, E. Kariv, L. L. Miller, J. Am. Chem. Soc., 97 (1975) 3549.
  133. [14] W. M. Damien, Analyst, 119 (1994) 1953.
  134. [15] R. W. Murry, Acc. Chem. Res. 13(1980), 135.
  135. [17] N. Sangodkar, S. Sukeerthi, A. Q. Contractor, Anal. Biochem., 68 (1996) 779.
  136. [20] S.Manihar, G.. J. Justin, H. D. Brynn, B. Donald, Biosensors and Bioelectronics, 13 (1998) 953.
  137. [21] K. P. Shtsls, J. Krystyna, M. Maciej, T. Magdalena, Electrochim. Acta, 46 (2000) 231.
  138. [23] M. Terrones, J. Campos-Delgado, etc., Nano Today, 5(2010) 351-372
  139. [25] 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學 研究所碩士論文,(2003)。
  140. [26] Bard, A.J., Faulkner, L.R., Electrochemical methods : Fundamentals and applications, New York : John Wiley&Sons, 2nd Edition, 2000.
  141. [74] B. Orel, U. Opara Kraˇsovec, N. Groˇselj, M. Kosec, G. Drazic, R. Reisfeld, Gasochromic behavior of sol–gel derived Pd doped peroxopolytungstic acid (W-PTA) nano-composite films, J. Sol–Gel Sci. Technol., 14 (1999) 291.
  142. [111] T. J. R. Lambert and D. J. Castle, Schizophrenia MJA, 178 (2003) S57–S61.
  143. [112] W.O. Foye, Principios de Qu´y´mica Farmaceutica, Editorial Reverte. Barcelona, 222 (1991).
  144. [113] A. A. Ensafi and E. Heydari, Analytical letters, 41 (2008) 2487-2502.
  145. [116] O. Papp, I. Adam and I. Simonyi, Acta. Pharm. Hung., 60 (1990) 204–9.
  146. [118] S. U. Zhang, W. B. Hu, W. W. Li, S. M. Zhang and J. Wuhan, J. Univ. Technol., 13 (1998), 45.
  147. [119] Y. M. Huang and Z. H. Chen, Talanta, 57 (2002) 953.
  148. [120] M. Shamsipur, B. Hemmateenejad and M. Akhond, J. AOAC Int., 85 (2000) 70.
  149. [122] T. Aman, A. Rashid, I. Khokhar and J. Iqbai, Anal. Lett., 30 (1997) 109.
  150. [124] F. W. Teare and R. N. Yadav, Can. J. Pharm. Sci., 13 (1978) 69.
  151. [126] R. Ninci, M.G. Giovannini, L.D. Corte, G. Sgaragli, J. Chromatogr., 381 (1986) 315.
  152. [128] K. M. Łukasiewicz, H. P. Tarasiewicz and A. Panuszko, Anal. Lett., 41(2008) 789–805.
  153. [130] G. Ziyatdinova, J. Galandova, J. Labuda, Int J Electroanal Sci, 3 (2008) 223–235.
  154. [132] J. Wang, M. Musameh, Z. Lin, J Am Chem Soc., 125 (2003) 2408–2409.
  155. [133] G.A. Rivas, S. A. Miscoria, J. Desbrieres, G. D. Barrera, Talanta, 71 (2007) 270–275.
  156. [134] J. Galandova, G. Ziyatdinova, J. Labuda, Anal Sci, 24 (2008) 711–716.
  157. [135] J. Li, Q. Liu, Y. Liu, S. Liu, S. Yao, Anal Biochem, 346 (2005)107–114.
  158. [136] L. Agui, P.Y. Sedeno and J. M. Pingarron, Anal. Chim. Acta, 622 (2008) 11.
  159. [138] U. Yogeswaran, S. M. Chen, Sens. Actuators, B, 130 (2008) 739.
  160. [140] M. Shim, A. Javey, N.W.S. Kam, H. Dai, J Am Chem Soc., 123 (2001)11512–11513.
  161. [141] Kolasinska M, Krastev R, Warszynski P (2007) J Coll Interface Sci, 305:46–56.
  162. [142] Arribas AS, Bermejo E, Chicharo M, Zapardiel A, Luque GL, Ferreyra NF, Rivas GA (2007) Anal Chim Acta, 596:183–194.
  163. [144] K. M. Łukasiewicz, H. P. Tarasiewicz and A. Panuszko, Anal. Lett., 41 (2008) 789–805.
  164. [145] C. Masarapu, K.H. Hung, B.Q. Wei, American Chemical Society Nano, 3 (2009) 2199.
  165. [146] Q. Zhang, J.P. Rong, D.S. Ma, B.Q. Wei, Energy & Environmental Science, 4 (2011) 2152.
  166. [147] J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, Energy & Environmental Science, 4 (2011) 656.
  167. [148] Y. Li, Y. Umasankar, S.M. Chen, Talanta, 79 (2009) 486.
  168. [149] Y. Li, Y. Umasankar, S.M. Chen, Analytical Biochemistry, 388 (2009) 288.
  169. [150] K.C. Lin, X.C. Jian, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 3427.
  170. [151] A.K. Upadhyay, S.M. Chen, T.W. Ting, Y.Y. Peng, International Journal of Electrochemical Science, 6 (2011) 3466.
  171. [152] Y.L. Yang, B. Unnikrishnan, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 3902.
  172. [153] B. Unnikrishnan, Y.L. Yang, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 3224.
  173. [154] Y. Li, S.Y. Yang, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 3982.
  174. [155] J.Y. Yang, Y. Li, S.M. Chen, K.C. Lin, International Journal of Electrochemical Science, 6 (2011) 2223.
  175. [156] Y.L. Yang, B. Unnikrishnan, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 3743.
  176. [157] Y. Li, S.M. Chen1, R. Sarawathi, International Journal of Electrochemical Science, 6 (2011) 3776.
  177. [158] Y. Li, C.Y. Yang, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 4829.
  178. [159] Y.J. Chang, A.P. Periasamy, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 4188.
  179. [161] Y. Umasankar, A.P. Periasamy, S.M. Chen, Talanta 80 (2010) 1094.
  180. [163] Y. Umasankar, Y. Li, S.M. Chen, Journal of The Electrochemical Society, 157 (2010) K187.
  181. [164] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, American Chemical Society Nano, 4 (2010) 6337.
  182. [166] R. Li, Z. Shang, G. Wang, Y. Pan, X. Zhao, Journal of Molecular Structure (Theochem), 635 (2003) 203.
  183. [167] R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, Journal of Molecular Structure (Theochem), 806 (2007) 93.
  184. [168] F. Ma, Z. Zhang, H. Jia, X. Liu, Y. Hao, B. Xu, Journal of Molecular Structure (Theochem), 955 (2010) 134.
  185. [169] E. Chełmecka, K. Pasterny, T. Kupka, L. Stobiňski, Journal of Molecular Structure (Theochem), 948 (2010) 93.
  186. [170] M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon, 39 (2001) 1251.
  187. [171] B. Zhao, H. Hu, A. Yu, D. Perea, R.C. Haddon, Journal of the American Chemical Society, 127 (2005) 8197.
  188. [172] W. Wang, Y. Lin, Y.P. Sun, Polymer, 46 (2005) 8634.
  189. [173] L. Qu, Y. Lin, D.E. Hill, B. Zhou, W. Wang, X. Sun, Macromolecules, 37 (2004) 6055.
  190. [175] J. Gou, Z. Liang, C. Zhang, B. Wang, Composites Part B: Engineering, 36 (2005) 524.
  191. [178] A. Merkoçi, M. Pumera, X. Llopis, B. Pérez, M. Valle, S. Alegret, Trends in Analytical Chemistry, 24 (2005) 826.
  192. [183] Y.C. Pan, R. Thangamuthu, S.M. Chen, Electroanalysis, 22 (2010) 1115.
  193. [184] Y.H. Ho, A.P. Periasamy, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 3922.
  194. [185] T.H. Tsai, S.H. Wang, S.M. Chen, International Journal of Electrochemical Science, 6 (2011) 1655.
  195. [187] Y. Zhang, L. Luo, Y. Ding, X. Liu, Z. Qian, Microchimica Acta, 171 (2010) 133.
  196. [188] M. Nagasawa, A. Holtzer, Journal of the American Chemical Society, 86 (1964) 538.
  197. [189] S.J. Miklavic, S.J. Marcelja, The Journal of Physical Chemistry C, 92 (1988) 6718.
  198. [190] S. Misra, S. Varanasi, P.P. Varanasi, Macromolecules, 22 (1989) 4173.
  199. [191] E.B. Zhulina, O.V. Borisov, T.M. Birshtein, Journal de Physique II (France), 2 (1992) 63.
  200. [192] J.F. Argiller, M. Tirrel, Theoretica Chimica Acta, 82 (1992) 343.
  201. [195] K. Kurihara, T. Kunitake, N. Higashi, M. Niwa, Langmuir, 8 (1992) 2087.
  202. [196] T. Abe, K. Kurihara, N. Higashi, M. Niwa, The Journal of Physical Chemistry C, 99 (1995) 1820.
  203. [197] K. Kurihara, T. Abe, N. Higashi, M. Niwa, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 103 (1995) 265.
  204. [198] T. Abe, S. Hayashi, N. Higashi, M. Niwa, K. Kurihara, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169 (2000) 351.
  205. [199] Y. Mir, P. Auroy, L. Auvray, Physical Review Letters, 75 (1995) 2863.
  206. [200] P. Guenoun, A. Schlachli, D. Sentenac, J.W. Mays, J.J. Benattarir, Physical Review Letters, 74 (1995) 3628.
  207. [201] S. Hayashi, T. Abe, N. Higashi, M. Niwa, K. Kurihara, Langmuir, 18 (2002) 3932.
  208. [202] R. Hariharan, C. Biver, J. Mays, W.B. Russel, Macromolecules, 31 (1998) 7506.
  209. [203] T. Abe, K. Kurihara, N. Higashi, M. Niwa, Langmuir, 15 (1999) 7725.
  210. [206] Z. Wojnarowska, A. Swiety-Pospiech, K. Grzybowska, L. Hawelek, M. Paluch, K.L. Ngai, Journal of Chemical Physics, 136 (2012) 164507.
  211. [207] O. Karadaş, F. Tok, U.H. Ulaş, Z. Odabaşi, American Journal of Physical Medicine & Rehabilitation, 90 (2011) 287.
  212. [208] S.Y. Bi, L.L. Yan, B.B. Wang, J.Y. Bian, Y.T. Sun, Journal of Luminescence, 131 (2011) 866.
  213. [210] X.J. Feng, Y.L. Shi, Z.G. Hu, Materials Chemistry and Physics, 131 (2011) 72.
  214. [211] H.G. Lin, T. Gan, K.B. Wu, Food Chemistry, 113 (2009) 701.
  215. [212] V. Nurchi, T. Pivetta, J. Lachowicz, G. Crisponi, Journal of Inorganic Biochemistry, 103 (2009) 227.
  216. [214] S. Timur, N. Pazarlioglu, R. Pilloton, A. Telefoncu, Talanta, 61 (2003) 87.
  217. [215] S. Srivastava, S.S. Sharma, S. Kumar, S. Agrawal, M. Singh, Y.K. Vijay, International Journal of Hydrogen Energy, 34 (2009) 8444.
  218. [216] Y.J. Zhang, Y.W. Lin, C.C. Chang, T.M. Wu, Synthetic Metals, 161 (2011) 937.
  219. [217] J. Weber, Journal of Biological Chemistry, 265 (1990) 9664.
  220. [219] K. Sonaje, K.J. Lin, S.P. Wey, C.K. Lin, T.H. Yeh, H.N. Nguyen, Biomaterials, 31 (2010) 6849.
  221. [221] W.W. Qin, Z. Jiao, M.K. Zhong, X.J. Shi, J. Zhang, Z.D. Li, X.Y. Cui, Journal of Chromatography B, 878 (2010) 1185.
  222. [222] A.L. Liu, J.D. Wang, W. Chen, X.H. Xia, Y.Z. Chen, X.H. Lin, Journal of Solid State Electrochemistry, 16 (2012) 1343.
  223. [223] P.G. Fenga, N.R. Stradiotto, M.I. Pividori, Electroanalysis, 23 (2011) 1100 .
  224. [224] M.F. Bergamini, A.L. Santos, N.R. Stradiotto, M.V.B. Zanoni, Journal of Pharmaceutical and Biomedical Analysis, 43 (2007) 315.
  225. [225] X. Zhang, D. Zhao, L. Feng, L. Jia, S. Wang, Microchimica Acta, 169 (2010) 153.