Title

RuHCF、金屬鈀與單層奈米碳管結合多層奈米碳管複合薄膜修飾電極的製備及電化學性質的研究

Translated Titles

Preparation, Characterization and Electroanalytical Application of Ruthenium Hexacyanoferrate, Palladiun and Single-walled Carbon Nanotubes with Multi-walled Carbon Nanotubes Modified Electrodes

Authors

洪淳鵬

Key Words

釕 ; 赤血鹽 ; 多層奈米碳管(MWCNT) ; 醇類 ; 硫類 ; 過氧化氫 ; 單層奈米碳管(SWCNT) ; 金屬鈀奈米粒子 ; 肼萊克多巴胺 ; 沙丁胺醇 ; 電催化 ; Ruthenium hexacyanoferrate ; Multi-walled carbon nanotube ; Alcohol ; Thiol ; Hydrogen peroxide ; Palladium nanourchins ; cyclic voltammetry ; Amperometry ; Hydrazine ; Nafion ; Salbutamol ; Ractopamine

PublicationName

臺北科技大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

陳生明

Content Language

繁體中文

Chinese Abstract

第一部分:RuHCF與多層碳納米碳管的複合膜已經被用來檢測醇、硫醇和過氧化氫(H2O2)的電化學感測器。釕赤血鹽與多層奈米碳管的複合材料在酸性的溶液中顯示了RuHCF的氧化還原過程,發現了四對氧化還原的特性峰。當RuHCF混和多層奈米碳管複合,能使其變得更加穩定與得到較高的電流訊號。對於醇類,包括乙醇、丙醇、異丙醇它具有良好的電催化氧化性質。對於硫醇,包括L型半胱氨酸、硫代硫酸鈉它具有良好的電催化氧化性質。特別的是過氧化氫在電催化時會同時發生氧化與還原反應。過氧化氫的應用電位為-0.1 V,線性範圍為0-1.2×10-4 M,偵測極限為10-5 M,靈敏度為123.2 μA mM-1 cm-2。乙醇、丙醇、異丙醇應用電位分別為+1.05 V、 1.15 V 與 +1.23V,估計線性範圍分別為2×10-4-1.7×10-3 M、4×10-4-1.7×10-3 M與0-8×10-4 M,靈敏度分別為4548.4 μA M-1 cm-2, 12544.6 μA M-1 cm-2, 38543.1 μA M-1 cm-2,與偵測極限分別為10-4 M、10-5 M與 10-5 M。 第二部分:在這項工作中,我們製作的鈀(Pd)奈米粒子修飾官能基化的多層奈米碳管(fMWCNTs)膜修飾電極,對電催化氧化肼和對過氧化氫還原。在0.5 M的硫酸溶液下鈀奈米粒子電沉積在電極表面上,然後以5 μl的fMWCNTs修飾在電極,而得到Pd-fMWCNTs之修飾電極。以場發式掃描電子顯微鏡(FESEM)和能量色散型X射線裝置(EDX)研究其表面形貌。表面電子轉移的變化發生在修飾電極的表面,利用電化學阻抗圖譜(EIS)研究薄膜對於肼的氧化和H2O2還原表現快速,線性電流訊號。該修飾電極顯示出的肼線性範圍1×10-5 - 7×10-5M和過氧化氫的線性範圍1 ×10-6 - 1.9×10-5 M,這個結果,建議複合膜修飾電極對於肼和過氧化氫的檢測具有良好的靈敏度和選擇性。 第三部分: 奈米碳管和Nafion(CNTs-Nafion)複合材料的電化學感測器已經被用來對萊克多巴胺和沙丁胺醇做偵測。其電化學活性和比較,單層奈米碳管(SWCNT)、多層奈米碳管(MWCNT)與單層和多層奈米碳管混合(SMWCNT)電流訊號比例為3:4:16。 SMWCNT-Nafion複合膜對萊克多巴胺和沙丁胺醇顯示出較低的過電位,分別為621 mV和645 mV。在pH 7 緩衝溶液下相較於單層奈米碳管和多層奈米碳管有更高的電流訊號分別為4.7和1.15倍。LSV技術觀察萊克多巴胺和沙丁胺醇混合而得到較低電位的氧化峰,分別在+576 mV(+530 mV)與628 mV(+600 mV)。電化學技術相較於UV能夠更清楚地顯示萊克多巴胺和沙丁胺醇的混合物。在+0.58 V和+0.6 V的應用電位,萊克多巴胺和沙丁胺醇的偵測極限分別為0.05 μM和0.1 μM (S / N= 3)。特別是它顯示了高靈敏度,分別為86917 和65842 μA mM-1 cm-2。萊克多巴胺線性區間為0.05-0.15 μM、0.15-3.15 mM及3.15-33.15 μM;沙丁胺醇線性區間為0.1-0.3 μM、0.3-3.3 μM及3.3-33.3 μM。

English Abstract

Part Ⅰ:An electrochemical sensor of alcohols, thiols and hydrogen peroxide (H2O2) has been investigated with hybrid composite of ruthenium hexacyanoferrate (RuHCF) and multi-walled carbon nanotubes (MWCNT). The formed MWCNT-RuHCF composite was examined in acidic solution and found four characteristic redox couples revealed RuHCF redox process. It was stable and found higher current response when RuHCF hybridized with MWCNT. It showed good electrocatalytic oxidation to alcohols including ethanol, propanol, isopropanol, and thiols including L-cysteine, thiosulfate, respectively. Particularly, both electrocatalytic oxidation and reduction of H2O2 can be performed by this composite. Applied potential at -0.1 V, it showed a linear range of 0-1.2×10-4 M, with a detection limit of 10-5 M (S/N = 3) and a significant sensitivity of 123.2 μA mM-1 cm-2. Ethanol, propanol, and isopropanol were determined at +1.05 V, +1.15 V, and +1.23 V, respectively. Linear range of 2×10-4 - 1.7×10-3 M, 4×10-4 - 1.7×10-3 M, and 0 - 8×10-4 M were estimated for these alcohols. The sensitivity was 4548.4 μA M-1 cm-2, 12544.6 μA M-1 cm-2, 38543.1 μA M-1 cm-2, with detection limit of 10-4 M, 10-5 M, and 10-5 M (S/N = 3), respectively. Part II:In this work we report the fabrication of Palladium (Pd) nanourchins decorated functionalized multiwalled carbon nanotubes (fMWCNTs) film modified electrode and its application towards electrocatalytic oxidation of hydrazine and reduction of H2O2. The Pd nanourchins were electrodeposited on the electrode by cyclic voltammetry (CV) in 0.5 M H2SO4 and then 5 μl of was drop casted on the Pd nanourchins modified electrode to form the Pd nanourchins decorated fMWCNTs. The surface morphology was studied Field Emission Scanning Electron Microscopy and Energy disperse X ray (EDX) spectral studies. The interfacial electron transfer changes occur at the modified electrode was studied using electrochemical impedance spectroscopy (EIS).The films exhibits rapid and linear electrocatalytic response for both oxidation of hydrazine and reduction of H2O2. The modified electrode showed a linear range from 1×10-5 - 7×10-5 M for hydrazine and 1×10-6 - 1.9×10-5 M for H2O2.These results show that the proposed composite film modified electrode possesses good sensitivity and selectivity for the detection of hydrazine and H2O2. Part III:An electrochemical sensor of ractopamine and salbutamol has been investigated with carbon nanotubes and Nafion (CNTs-Nafion) hybrid composites. They are electroactive and compared as the current response ratio as 3:4:16 for single-walled CNTs (SWCNT), multi-walled CNTs (MWCNT), and single- and multi-walled CNTs (SMWCNT), respectively. The SMWCNT-Nafion shows the lower over-potential at +621 mV and +645 mV for ractopamine and salbutamol and the higher current response which is 4.7 and 1.15 times to those using SWCNT and MWCNT in pH 7 PBS. Lower oxidation peaks are obviously observed at +576 mV (+530 mV) and +628 mV (+600 mV) for the ractopamine and salbutamol mixture are observed when using LSV (DPV) technique. The electrochemical techniques have better chance to determine the mixture than UV-Visible spectroscopy. Applied potential at +0.58 V and +0.6 V, it shows detection limit of 0.05 μM and 0.1 μM (S/N = 3) for ractopamine and salbutamol, respectively. Particularly, it shows the higher sensitivity of 86917 and 65842 μA mM-1 cm-2 among specific linear sections of 0.05 - 0.15 μM, 0.15 - 3.15 μM, 3.15 - 33.15 μM for ractopamine; and 0.1 - 0.3 μM, 0.3 - 3.3 μM, 3.3 - 33.3 μM for sulbutamol.

Topic Category 工程學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [1] P. Saber, W. Lund, Talanta. 29 (1982) 457.
    連結:
  2. [2] J. Wang, D. L. Hutchins Kumar, Anal. Chem. 58 (1986) 402.
    連結:
  3. [6] R. F. Lane, A. T. Hubbard, J. Phys, Chem. 77 (1973) 1401.
    連結:
  4. [7] C. R. Martin, T. A. Rhoades, J. A. Ferguson, Anal. Chem. 54 (1982) 1639.
    連結:
  5. [8] C. S. Cha, J. Chen, P. F. Liu, Electroanal. Chem. 345 (1993) 463.
    連結:
  6. [9] Y. Liu, L. Xu, Electrochemical Sensor for Tryptophan Determination Based on Copper-cobalt Hexacyanoferrate Film Modified Graphite Electrode, Sensors 7 (2007) 2446–2457.
    連結:
  7. [10] A. Abbaspour, A. Ghaffarinejad, Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode, Electrochim. Acta 53 (2008) 6643–6650.
    連結:
  8. [11] L. Shi, T. Wu, P. He, D. Li, Ch. Sun, J. Li, Amperometric Sensor for Hydroxylamine Based on Hybrid Nickel-Cobalt Hexacyanoferrate Modified Electrode, Electroanalysis 17 (2005) 2190–2194.
    連結:
  9. [12] S. Ayrault, B. Jimenez, E. Granier, E. Fedoroff, M.D.J. Jones, C. Loos-Neskovic, Sorption Mechanisms of Cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]2 Hexacyanoferrates and Their Relation to the Crystalline Structure, J. Solid State Chem. 141 (1998) 475–485.
    連結:
  10. [13] Q. Xu, S. Zhang, W. Zhang, L.T. Jin, K. Tanaka, H. Haraguchi, A. Itoh, Amperometric detection studies of Nafion/indium hexacyanoferrate film for the determination of electroinactive cations in ion chromatography, Fresenius J. Anal. Chem. 367 (2000) 241–245.
    連結:
  11. [14] J. Wang, X.J. Zhang, L. Chen, Comparison of Glucose Enzyme Electrodes Based on Dispersed Rhodium Particles and Cupric Hexacyanoferrate Within Carbon Paste Transducers, Electroanalysis 16 (2000) 1277–1281.
    連結:
  12. [15] A. Salimi, K. Abdi, Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol–gel technique: application to amperometric detection of hydrazine and hydroxyl amine, Talanta 63 (2004) 475–483.
    連結:
  13. [16] C.X. Cai, K.H. Xue, S.M. Xu, Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation, J. Electroanal. Chem. 486 (2000) 111–118.
    連結:
  14. [17] M.H. Pournaghi-Azar, H. Razmi-Nerbin, B. Hafezi, Amperometric Determination of Ascorbic Acid in Real Samples Using an Aluminum Electrode, Modified with Nickel Hexacyanoferrate Films by Simple Electroless Dipping Method, Electroanalysis 14 (2002) 206–212.
    連結:
  15. [18] J.W. Mo, B. Ogorevc, X.J. Zhang, B. Pihlar, Cobalt and Copper Hexacyanoferrate Modified Carbon Fiber Microelectrode as an All-Solid Potentiometric Microsensor for Hydrazine, Electroanalysis 12 (2000) 48–54.
    連結:
  16. [19] W.Y. Tao, D.W. Pan, Y.J. Liu, L.H. Nie, S.Z. Yao, An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly(o-aminophenol) film at iron-cobalt hexacyanoferrate-modified gold electrode, Anal. Biochem. 338 (2005) 332–340.
    連結:
  17. [20] M.H. Pournaghi-Azar, H. Dastangoo, J. Electroanal. Chem. 523 (2002) 26–33.
    連結:
  18. [21] R.O. Lezna, R. Romagnoli, N.R. de Tacconi, K. Rajeshwar, Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates, J. Electroanal. Chem. 544 (2003) 101–106.
    連結:
  19. [22] E. Cziro’k, J. Ba’cskai, P.J. Kulesza, G. Inzelt, A. Wolkiewicz, K. Miecznikowski, M.A. Malik, Quartz crystal microbalance study of the growth of indium hexacyanoferrate films during electrodeposition and coagulation, J. Electroanal. Chem. 405 (1996) 205–209.
    連結:
  20. [23] Y. Wang, G.Y. Zhu, E.K. Wang, Electrochemical quartz crystal microbalance study for vanadium hexacyanoferrates: monitoring of film growth and ion effects during redox reactions, J. Electroanal. Chem. 430 (1997) 127–132.
    連結:
  21. [24] A. Ro’ka, I. Varga, G. Inzelt, Electrodeposition and dissolution of yttrium-hexacyanoferrate layers, Electrochim. Acta 51 (2006) 6243–6250.
    連結:
  22. [25] K. Kasem, F.R. Steldt, T.J. Miller, A.N. Zimmerman, Electrochemical synthesis of zeolite-like ruthenium-based hexacyanometalates multi-film assemblies, Micropor. Mesopor. Mater. 66 (2003) 133–141.
    連結:
  23. [26] S.M. Chen, M.F. Lu, K.C. Lin, Preparation and characterization of ruthenium oxide/hexacyanoferrate and ruthenium hexacyanoferrate mixed films and their electrocatalytic properties, J. Electroanal. Chem. 579 (2005) 163–174.
    連結:
  24. [27] Z.Y. Xun, C.X. Cai, W. Xing, T.H. Lu, Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method, J. Electroanal. Chem. 545 (2003) 19–27.
    連結:
  25. [28] J. Bacskai, K. Martinusz, E. Czirok, G. Inzelt, P.J. Kulesza, M.A. Malik, Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions, J. Electroanal. Chem. 385 (1995) 241–248.
    連結:
  26. [29] A. Eftekhari, Electrochemical behavior and electrocatalytic activity of a zinc hexacyanoferrate film directly modified electrode, J. Electroanal. Chem. 537 (2002) 59–66.
    連結:
  27. [30] M.H. Pournaghi-Azar, H. Nahalparvari, Zinc hexacyanoferrate film as an effective protecting layer in two-step and one-step electropolymerization of pyrrole on zinc substrate, Electrochim. Acta 50 (2005) 2107–2115.
    連結:
  28. [31] J. Zheng, Q. Sheng, L. Li, Y. Shen, Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine, J. Electroanal. Chem. 611 (2007) 155–161.
    連結:
  29. [32] M. Sluyters-Rehbach, J.H. Sluyters, in: A.J. Bard (Ed.), Electroanalytical Chemistry, A Series of Advances, vol. 4, Marcel Dekker, Inc., New York, 1970, p. 49.
    連結:
  30. [34] J.R. Macdonald, W.B. Johnson, in: E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy. Theory, Experiment, and Applications, second ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
    連結:
  31. [36] Welch CW, Compton RG. The Use of Nanoparticles in Electroanalysis: A Review. Anal. Bioanal Chem 2006; 384:601–619.
    連結:
  32. [37] Cui K, Song YH, Yao Y, Huang ZZ, Wang L. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun 2008; 10: 663–667.
    連結:
  33. [38] Shenhar R, NorstenT, Rotello V. Polymer- mediated Nanoparticle assembly: structural control and applications. Ad Mater 2005; 17:657-669.
    連結:
  34. [39] Yamauchi M, Kobayashi H, Kitagawa H. Hydrogen Storage Mediated by Pd and Pt Nanoparticles. Chem Phys Chem 2009; 10: 2566–2576.
    連結:
  35. [40] Bianchini, C.; Shen, P. K. Palladium-Based Electro catalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem Rev 2009; 109: 4183–4206..
    連結:
  36. [41] Yu XW, Pickup PG. Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 2008; 182:124–132.
    連結:
  37. [42] Miscoria SA, Barrera GD, Rivas GA. Analytical Performance of a Glucose Biosensor Prepared by Immobilization of Glucose Oxidase and Different Metals into a Carbon Paste Electrode. Electroanalysis 2002; 14:981–987.
    連結:
  38. [43] Wang L, Yamauchi Y. Facile Synthesis of Three-Dimensional Dendritic Platinum Nano electrocatalyst. Chem Mater 2009; 21: 3562–3569.
    連結:
  39. [44] Wang L, Wang HJ, Nemoto Y, Yamauchi Y. Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chem Mater 2010; 22:2835–2841.
    連結:
  40. [45] Plowman B, Ippolito S J, Bansal V, Sabri YM, O’Mullane AP, Bhargava S K. Gold nanospikes formed through a simple electrochemical route with high electrocatalytic and surface enhanced Raman scattering activity. Chem Commun 2009; 5039–5041.
    連結:
  41. [46] Liu H, Tian Y. Analytical Application of Pyramidal, Rodlike, and Spherical Gold Nanostructures: Simultaneous Detection of Ascorbic Acid and Uric Acid. Electroanalysis 2008; 20: 1227-1223.
    連結:
  42. [47] Wildgoose G, Banks CE, Compton RG. Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small 2006; 2: 182-193.
    連結:
  43. [48] Choi HC, Shim M, Bangsaruntip S, Dai H. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes. J Am Chem Soc 2002; 124: 9058-9059.
    連結:
  44. [49] Xue B, Chen P, Hong Q, Lin J, Lee K, Tan K. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 2001; 11: 2378-2381.
    連結:
  45. [50] Kong J, Chapline MG, Dai H. Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors. Adv Mater 2001; 13: 1384-1386.
    連結:
  46. [51] Guo DJ, Li HL. Electrochemical synthesis of Pd nanoparticles on functional MWCNT surfaces. Electrochem Commun 2004; 6: 999-1003.
    連結:
  47. [52] Fang Y, Guo S, Zhu C, Dong S, Wang E. Twenty second synthesis of Pd nanourchins with high electrochemical activity through an electrochemical route. Langmuir 2010; 26:17816-17820.
    連結:
  48. [53] J.M.S.E. Johnson, A.M. Stelzleni, T.A. Thrift, J.D. Savell, T.M. Warnock, D.D. Johnson Meat Science, 85 (2010), p. 379
    連結:
  49. [54] L.E. Watkins, D.J. Jones, D.H. Mowrey, D.B. Andersom, E.L. Veenhuizen Journal of Animal Science, 68 (1990), p. 3588
    連結:
  50. [58] R. Berges, J. Segura, X. De La Torre, R. Ventura J. Chromatogr. B: Biomed. Appl., 723 (1999), pp. 173–184
    連結:
  51. [3] R. P. Baldwin, Thomsen, K. N. Talanta, 38 (1991) 1.
  52. [4] R. W. Murray, A. G.. Ewing, R. A. Durst, Anal. Chem, 59 (1987) 379A.
  53. [5] W. M. Damien, Analyst, 9 (1994) 1953.
  54. [33] C. Gabrielli, Methodes electrochimiques – Mesures d’impedances, Techniques de l’Ingenieur, 1994. .
  55. [35] M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
  56. [55] S. Eshaq, S.C. Chai, S. Jamokha, G. Aznar, M.K. Hoffman Analytica Chimica Acta, 483 (2003), p. 137
  57. [56] C.H.C. Halsey, P.S. Weber, S.S. Reiter, B.N. Stronach, J.L. Bartosh, W.G. Bergen Journal of Animal Science, 89 (2011), p. 1011
  58. [57] D. Catalano, R. Odore, S. Amedeo, C. Bellino, E. Biasibetti, B. Miniscalco, G. Perona, P. Pollicino, P. Savarino, L. Tomassone, R. Zanatta, M.T. Capucchio Livestock Science, 144 (2012), p. 74
  59. [59] J.R. Loss, R.F. Orzechoski, R.S. Hock Biomed. Chromatogr., 14 (2000), pp. 1–5