Title

聚乳酸材料之阻燃及增韌: I.聚乳酸/碳纖維/氫氧化鋁/奈米黏土複合材料之阻燃性質 II.利用分枝狀高分子增韌聚乳酸材料

Translated Titles

Flame retardant and Toughening Properties of Polylactide Composites: I.Thermal Properties and Flammability of Polylactide Nanocomposites with Aluminum Trihydrate/Carbon Fiber/Organoclay II.Toughening Properties of Polylactide Composites with branched Polymer

Authors

林晏輝

Key Words

熔融混煉 ; 聚乳酸 ; 奈米黏土 ; 阻燃複合材料 ; 分枝高分子 ; 增韌複合材料 ; Melt blending ; Flame retardant ; polylactide ; montmorillonite ; Hyperbranched ; Toughness

PublicationName

臺北科技大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

莊祖煌

Content Language

繁體中文

Chinese Abstract

本研究第一部分以氫氧化鋁(ATH)結合奈米黏土(Clay30B)作為無鹵素阻燃劑,另外,添加碳纖維試圖提升其複合材料之機械性質。藉由塑譜儀以熔融混煉法製備聚乳酸/碳纖維/氫氧化鋁/奈米黏土之阻燃性複合材料。首先,我們利用了XRD、SEM及TEM觀察複合材料混合後的分散型態。接著,藉由LOI、UL-94、圓錐量熱儀及TGA來分析其奈米複合材料的熱穩定性及耐燃性質。最後由萬能拉力機來分析其機械性質。由分析結果顯示,由XRD及TEM觀察到,奈米黏土經熔融混煉過後能達到其插層及脫層的型態。隨著奈米黏土取代碳纖維的比例增加,其複合材料的LOI值及UL-94等級都有顯著的提升。觀察圓錐量熱儀的分析,也明顯的看出其平均熱釋速率降低不少。加入碳纖維後,與只添加氫氧化鋁的複合材料相互比較,其機械性質也有明顯的提升。由這幾組的的複合材料之中,以PLA:CF:ATH:Clay30B重量比為60:15:20:5之阻燃複合材料表現最好,LOI值能達32.0,高於PLA的20.5,UL-94的阻燃等級也能達到V-0等級,並且沒有垂滴及引燃棉花的現象。第二部分以自行合成的分枝高分子(BP6)當作可塑劑,試圖提升聚乳酸的韌性性質。藉由塑譜儀以熔融混煉法製備聚乳酸/分枝狀高分子增韌複合材料。藉由DSC及TGA分析其樣品的熱穩定性及相容性,由萬能拉力機及Izod衝擊試驗來分析其機械性質,最後以SEM觀察材料的微結構及斷裂的機制。由DSC分析得知,隨著BP6添加的量越多,其玻璃轉移溫度Tg、結晶溫度Tc、熔融溫度Tm相較於純PLA,其溫度都有降低的趨勢。觀察其機械性質,隨著BP6添加量越多,屈服強度下降;但在添加到10wt%以上BP6其伸長率有大幅的提升,其中以PLA:BP6為80:20的281.6%為最好。觀察耐衝擊強度,添加入BP6後,衝擊強度都有所提升,而衝擊強度最好的以PLA:BP6為80:20的 476.7J/m為最高,由此可看出添加量20wt%BP6的表現最好。最後由SEM圖觀察其拉伸斷裂截面及衝擊斷裂截面的表面形態。

English Abstract

In Part I. Polylactide (PLA) nanocomposites with aluminum hydroxide (ATH),carbon fiber and montmorillonite (Clay30B) were prepared via direct melting blending using a twin-screw mixer. In addition, add carbon fiber to try to enhance the mechanical properties of nanocomposites. The exfoliated and intercalated structures of clay in the matrix were observed by TEM and XRD. The thermal degradation temperature of the PLA/CF/ATH/MMT nanocomposite determined by thermogravimetric analysis are higher than that addition ATH and carbon fiber without organoclay. The V-0 rating of the PLA nanocomposites has been achieved, and there is no melt dripping and ignited cotton. And then add carbon fiber, the mechanical properties of the PLA/CF/ATH/Clay30B nanocomposites is higher than PLA/ATH/Clay30B nanocomposites. Results showed that adding carbon fiber to replace ATH of the nanocomposites, not only enhance the mechanical properties, also maintain the flame retardancy. In PartII. Polylactide (PLA) composites with Hyperbranched polymer were prepared via direct melting blending using a twin-screw mixer.Beacause the Hyperbranched polymer has abundant functional end groups. So add Hyperbranched polymer to try to enhance the Toughness properties of PLA composites. The thermal degradation temperature of the PLA/BP6 composite determined by thermogravimetric analysis are higher than that pure PLA.The Differential scanning calorimetry was observed the glass transition temperature(Tg) decreased with the HBP content increase in the PLA/BP6 composite. The elongation of break and impact strength of the PLA/BP6 composites huge increase when the HBP cotent over 10 percent.The SEM photos was observed brittle fracture to change ductile fracture with the HBP content increase in the PLA/BP6 composite.

Topic Category 工程學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [1] Vink E.T.H. , Rabago K.R., Glassner D.A., and Gruber P.R., "Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production," Polymer Degradation and Stability, vol. 80, pp. 403-419, 2003.
    連結:
  2. [2] Hornsby P.R., "Application of magnesium hydroxide as a fire retardant and smoke-suppressing additive for polymers," Fire and Materials, vol. 18, pp. 269-276, 1994.
    連結:
  3. [5] W. H. Carothers. and J. A. Arvin., "STUDIES ON POLYMERIZATION AND RING FORMATION. II. POLY-ESTERS," Journal of the American Chemical Society, vol. 51, pp. 2560–2570, 1929.
    連結:
  4. [6] Gross R.A. and Kalra B., "Biodegradable polymers for the environment," Science, vol. 297, p. 803, 2002.
    連結:
  5. [10] C. Nguyen, C. J. Hawker, E. H. R. D. Miller, J. L. Hedrick, R. Gauderon, and J. G. Hilborn, "Hyperbranched polyesters as nanoporosity templating agents for organosilicates," Macromolecules, vol. 33, pp. 4281-4284, 2000.
    連結:
  6. [11] H. Liu, J. H. Nasman, and M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials,," Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, pp. 3074-3085, 2000.
    連結:
  7. [12] Y. H. Kim, "Hyperbranched polymers 10 years after," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, 1998.
    連結:
  8. [13] T. Sato, N. Higashida, T. Hirano, and M. Seno, "Initiator-fragment incorporation radical copolymerization of divinylbenzene and N-isopropylacrylamide with dimethyl 2,2?-azobisisobutyrate: Formation of soluble hyperbranched polymer nanoparticle,," Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, pp. 1609-1617, 2004.
    連結:
  9. [14] Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, and Z. Y. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant," J. Am. Chem. Soc., vol. 127, pp. 2060-2061, 2005.
    連結:
  10. [15] Y. Tezuka, R. Komiya, and M. Washizuka, "Designing 8-shaped polymer topology by metathesis condensation with cyclic poly(THF) precursors having allyl groups," Macromolecules, vol. 36, pp. 12-17, 2003.
    連結:
  11. [17] Kramer E.J., "Microscopic and molecular fundamentals of crazing," Advances in Polymer Science, vol. 52-53, pp. 1-56, 1983.
    連結:
  12. [18] Huggins M.L., "Theory of Solution of High Polymers," J. Am. Chem. Soc., vol. 64, pp. 1712-1719, 1942.
    連結:
  13. [19] Alexandre M. and Dubois P, "Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials," Materials Science and Engineering R: Reports, vol. 28, pp. 1-63, 2000.
    連結:
  14. [20] Morgan A.B. and Gilman J.W., "Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study," 87, vol. 8, 2002.
    連結:
  15. [21] Yanagisawa T., Kiuchi Y., and Iji M., "Enhanced flame retardancy of polylactic acid with aluminum tri-hydroxide and phenolic resins," Kobunshi Ronbunsh, vol. 66, pp. 49-54, 2009.
    連結:
  16. [22] Zhan J., Song L., Nie S., and Hu Y., "Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant," 94, vol. 3, 2009.
    連結:
  17. [23] Reti C., Casetta M., Duquesne S., Bourbigot S., and Delobel R., "Flammability properties of intumescent PLA including starch and lignin," Polymers for Advanced Technologies, vol. 19, pp. 628-635, 2008.
    連結:
  18. [24] Yeh J.T., Yang M.H., and Huang S.S., "Combustion of polyethylenes filled with metallic hydroxides and crosslinkable polyethylene," Polymer Degradation and Stability, vol. 50, pp. 229-234, 1995.
    連結:
  19. [25] Almeida Pinto U., Visconte L.L.Y., Gallo J., and Nunes R.C.R., "Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH)," Polymer Degradation and Stability, vol. 69, pp. 257-260, 2000.
    連結:
  20. [26] Ramazani S.A.A., Rahimi A., Frounchi M., and Radman S., "Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites," 29, vol. 5, 2008.
    連結:
  21. [27] Cardenas M.A., Garcia-Lopez D., Gobernado-Mitre I., Merino J.C., Pastor J.M., Martinez J.d.D., Barbeta J., and Calveras D., "Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites – Effect of particle size and surface treatment of ATH filler," Polymer Degradation and Stability, vol. 93, pp. 2032-2037, 2008.
    連結:
  22. [28] Jiao C. M. and Chen X. L., "Flame Retardant Synergism of Hydroxy Silicone Oil and Al (OH)3 in EVA Composites," Polymer-Plastics Technology and Engineering, vol. 48, pp. 665-670, 2009.
    連結:
  23. [29] Jiao C. M. and Chen X. L., "Synergistic flame retardant effect of lanthanum oxide in ethylene-vinyl acetate/aluminium hydroxide composites," Iranian Polymer Journal, vol. 18, pp. 723-730, 2009.
    連結:
  24. [30] Khattab M.A., "Decabromobiphenyl oxide-aluminum hydroxide system as a flame retardant for styrene-butadiene rubber," Journal of Applied Polymer Science, vol. 78, pp. 2134-2139, 2000.
    連結:
  25. [31] Zhu J. and Wilkie C.A., "Thermal and fire studies on polystyrene-clay nanocomposites," Polymer International, vol. 49, pp. 1158-1163, 2000.
    連結:
  26. [32] Zanetti M. and Costa L., "Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA," Polymer, vol. 45, pp. 4367-4373, 2004.
    連結:
  27. [33] Chang Y.W., Y. Yang, Ryu S., and Nah C., "Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites," Polymer International, vol. 51, pp. 319-324, 2002.
    連結:
  28. [34] Duquesne S., Jama C., Le Bras M., Delobel R., Recourt P., and Gloaguen J.M., "Elaboration of EVA-nanoclay systems - Characterization, thermal behaviour and fire performance," Composites Science and Technology, vol. 63, pp. 1141-1148, 2003.
    連結:
  29. [35] Zhang J., Hereid J., Hagen M., Bakirtzis D., Delichatsios M.A., Fina A., Castrovinci A., Camino G., Samyn F., and Bourbigot S., "Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE," Fire Safety Journal, vol. 44, pp. 504-513, 2009.
    連結:
  30. [36] Wu D., Wu L., Wu L., and Zhang M., "Rheology and thermal stability of polylactide/clay nanocomposites", Polymer Degradation and Stability," 91, vol. 12, 2006.
    連結:
  31. [37] Lee S.Y., Chen H., and Hanna M.A., "Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type," Industrial Crops and Products, vol. 28, pp. 95-106, 2008.
    連結:
  32. [39] Urbanczyk L., Ngoundjo F., Alexandre M., Jerome C., Detrembleur C., and Calberg C., "Synthesis of polylactide/clay nanocomposites by in situ intercalative polymerization in supercritical carbon dioxide," European Polymer Journal, vol. 45, pp. 643-648, 2009.
    連結:
  33. [40] Fukushima K., Murariu M., Camino G., and Dubois P., "Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid)," Polymer Degradation and Stability, vol. 95, pp. 1063-1076, 2010.
    連結:
  34. [41] Y. Lin, K. Y. Zhang, Z. M. Dong, L. S. Dong, and Y. S. Li, "Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide)," Macromolecules vol. 40, pp. 6257-6267, 2007.
    連結:
  35. [42] R. Bhardwaj and A. K. Mohanty, "Modification of Brittle Polylactide by Novel Hyperbranched Polymer-Based Nanostructures," Biomacromolecules vol. 8, pp. 2476-2484, 2007.
    連結:
  36. [43] X. Wen, Y. Lin, C. Han, L. Han, Y. Li, and L. Dong, "Dramatic Improvements in Mechanical Properties of Poly( L -lactide)/Silica Nanocomposites by Addition of Hyperbranched Poly(ester amide)," Macromolecular Materials and Engineering, vol. 295, pp. 415-4-19, 2010.
    連結:
  37. [44] I. Pillin, N. Montrelay, and Y. Grohens, "Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?," Polymer vol. 47, pp. 4676-4682, 2006.
    連結:
  38. [45] C. Courgneau, S. Domenek, A. Guinault, L. Ave’rous, and V. Ducruet, "Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid)," J Polym Environ vol. 19, pp. 362-371, 2011.
    連結:
  39. [46] F. Feng and L. Ye, "Morphologies and Mechanical Properties of Polylactide/Thermoplastic Polyurethane Elastomer Blends," Journal of Applied Polymer Science, vol. 119, pp. 2278-2783, 2011.
    連結:
  40. [47] Z. Jia, J. Tan, C. Han, Y. Yang, and L. Dong, "Poly(ethylene glycol-co-propylene glycol) as a Macromolecular Plasticizing Agent for Polylactide:Thermomechanical Properties and Aging," Journal of Applied Polymer Science, vol. 114, pp. 1105-1117, 2009.
    連結:
  41. [48] C.H. Ho, Wang C.H., Lin C.I., and Lee Y.D., "Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends," Polymer, vol. 49, pp. 3902-3910, 2008.
    連結:
  42. [49] Cheng C.K., Yu C.B., Guo W.J., Wang S.F., Chuang T.H., and Lin Y.H., "Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay," Carbohydrate Polymers, vol. 87, pp. 1119-1123, 2012.
    連結:
  43. [50] 王嘉淳, "分枝狀聚氧化乙烯鋰電解質之製備及特性分析," 國立台北科技大學化學工程研究所, 台北 2010.
    連結:
  44. [52] J.R. Sarasua, R. E. Prud’homme, M. Wisniewski, B. A. Le, and N. Spassky, "Crystallization and Melting Behavior of Polylactides," Macromolecules vol. 31, pp. 3895–3905, 1998.
    連結:
  45. [53] L. Jiang, M. P. Wolcott, and J. Zhang, "Study of Biodegradable Polylactide/Poly(butyleneadipate-co-terephthalate) Blends," Biomacromolecules, vol. 7, pp. 199-207, 2006.
    連結:
  46. [54] L. L. Zhang, C. D. Xiong, and X. M. Deng, "Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends," Polymer, vol. 37, pp. 235-241, 1996.
    連結:
  47. [55] S. Wong, R. A.Shanks, and A. Hodzic, "Mechanical Behavior and Fracture Toughness of Poly(L-lactic acid)-Natural Fiber Composites Modified with Hyperbranched Polymers," Macromol. Mater. Eng. , vol. 289, pp. 447-456, 2004.
    連結:
  48. [56] G. M. Kim, "Micromechanical deformation processes in toughened and particle filled semicrystalline polymers: Part 2. model representation for micromechanical deformation processes," Polymer, vol. 39, pp. 5699-5703, 1998.
    連結:
  49. [57] J. S. Wu, A. F. Yee, and Y. W. Mai, "Fracture toughness and fracture mechanisms of polybutylene-terephthalate/polycarbonate/ impact-modifier blends," JOURNAL OF MATERIALS SCIENCE, vol. 29, pp. 4510-4522, 1994.
    連結:
  50. [58] B. Li, F.X. Dong, X. L. Wang, J. Yang, D. Y. Wang, and Y. Z. Wang, "Organically modified rectorite toughened poly(lactic acid):Nanostructures, crystallization and mechanical properties," European Polymer Journal vol. 45, pp. 2996-3003, 2009.
    連結:
  51. [3] Qiu L., Lu J., Xie R., and Qu B., "Structural characteristics and flame-retardant properties of nanosized magnesium hydroxide," Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, vol. 24, pp. 81-84, 2003.
  52. [4] 陳振泰, 鄒慶齡, and 陳文億, "無機填充材--氫氧化鎂在高分子阻燃的應用及發展," 強化塑膠, vol. 87, pp. 34-40, 2001.
  53. [7] 沈永清, 張信貞, 莊學平, and 張榮樹, "高分子難燃機構及原理," 化工資訊, vol. 9, pp. 15-31, 1995.
  54. [8] 陳光榮 and 黃素珍, "難燃劑國內市場現況及走向," 化工資訊, vol. 7, pp. 24-37, 1993.
  55. [9] 廖建勛, "奈米無機層狀材料之發展與應用," 化工技術, vol. 11, pp. 168-179, 2003.
  56. [16] Anderson T.L, Fracture mechanics:fundamentals and applications., 2005.
  57. [38] Nieddu E., Mazzucco L., Gentile P., Benko T., Balbo V., Mandrile R., and Ciardelli G., "Preparation and biodegradation of clay composites of PLA," Reactive and Functional Polymers, vol. 69, pp. 371-379, 2009.
  58. [51] 柯以侃, "儀器分析," 台北市: 文京圖書有限公司, 1997, p. 405.
Times Cited
  1. 張舜智(2014)。含分枝狀高分子聚乳酸複合材料阻燃及增韌性質。臺北科技大學化學工程研究所學位論文。2014。1-129。 
  2. 許家誠(2014)。奈米黏土與氫氧化鋁對於聚烯烴彈性體複合材料之阻燃與機械特性研究。臺北科技大學有機高分子研究所學位論文。2014。1-71。