透過您的圖書館登入
IP:3.144.248.24
  • 學位論文

製備可溶性聚吡咯應用於高分子太陽能電池與以吸附微胞聚合法製成聚吡咯陰極應用於染料敏化太陽能電池

Synthesis of the Soluble Polypyrrole Applied in Polymer Solar Cells and Preparation of Polypyrrole Cathodes by Admicellar Polymerization Used in Dye-sensitzed Solar Cells

指導教授 : 王賢達
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究分為兩個部份,第一部分主要先行以陰離子界面活性劑鈉磺酸基琥珀酸二辛脂(di-(2-ethylhexyl) sodium sulfosuccinate, DEHS)為添加劑,以過硫酸銨(APS)為氧化劑,以不同比例合成出可溶性的聚吡咯,以IR光譜鑑定聚合物是否成功合成,並以GPC鑑定分子量,結果顯示吡咯單體與DEHS與APS的比例,在4:1.5:1時有最高的分子量在12000左右且有最高的溶解度。以TGA與DSC測試熱性質發現,PPYDEHS-2其Td點較高,但溶解度下降許多。以各種溶劑成膜後,在二甲基甲醯胺(DMF)中有最好的導電度(1.4S/㎝),而隨著選用溶劑的極性越小,其導電度越低。選用分子量最高與溶解度最好的可溶性聚吡咯(PPYDEHS)與[6,6]-苯基-碳61丁酸甲酯([6,6]-phenyl-C61-butyric acid methyl ester, PCBM)1:1混合,以DMF或鄰氯苯(1,2-dichlorobenzene)為溶劑,旋轉塗佈於ITO玻璃上作為高分子太陽能電池的主動層,並以PEDOT:PSS作為電洞傳導層,蒸鍍上Al電極後完成元件,測其光電轉換效率後發現,以鄰氯苯為溶劑,比以DMF為溶劑所製成的元件,其效率提升約70%,但整體效率,在1%以下。 第二部份是以聚吡咯作為染料敏化太陽能電池的陰極,並與濺鍍上去的Pt陰極比較其光電性質。合成聚吡咯纖維薄膜貼附於掺氟氧化亞錫(FTO)玻璃、單以氧化劑聚合聚吡咯沉積於FTO玻璃,此二種陰極皆因界面阻礙大,厚度大,使光電性質皆劣於Pt陰極。旋轉塗佈PPYDEHS於FTO玻璃上,可使光電性質提升,但可能會溶於電解液中。在界面活性劑存在下,以吸附微胞聚合法,使聚吡咯在FTO玻璃表面形成牢固的薄膜,耐有機溶劑與水洗,且不論以陽離子、陰離子、或非離子界面活性劑,與Pt陰極比較下,皆可使其光電性質提升,而光電轉換效率皆有5~10%的提昇。

並列摘要


The soluble polypyrrole (PPYDEHS) has been synthesized using ammonium peroxodisulfate as the oxidant and di-(2-ethylhexyl) sodium sulfosuccinate (DEHS) as the anion. The PPYDEHS was blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with 1:1 (wt%) ratio, and dimethyl formamide or 1,2-dichlorobenzene was used as a solvent to spin-coat these materials on indium tin oxide (ITO) glass to become an photoactive layer of the polymer solar cell. The fabricated polymer solar cell with above organic layer, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and ITO anode, and aluminum cathode show less than 1% overall efficiency. The counter electrodes used in dye-sensitized solar cell (DSSC) have been prepared by admicellar polymerization of pyrrole on fluorine doped tin oxide glasses (FTO) using ammonium peroxodisulfate or ferric chloride as oxidant and anionic (sodium dodecyl sulfate, DEHS), or cationic (cetyltrimethyl ammonium bromide), or nonionic (Triton® X-100, Tween®-20) surfactant. The fabricated DSSC’s with polypyrrole-coated counter electrodes show 5-10% better in overall photoelectric conversion efficiency than those DSSC’s assembled with plantinum as the counter electrode.

參考文獻


54. X. Zhang, J. Zhang, Z. Liu, and C. Robinson, “Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures,” Chemical Communications, vol. 10, no. 16, 2004, pp. 1852-1853.
1. B.G. O'Regan, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, 1991, pp. 737-740.
2. G. Tourillon, Handbook of Conducting Polymers, 1986.
3. E.J. Oh, K.S. Jang, and A.G. MacDiarmid, “High molecular weight soluble polypyrrole,” Synthetic Metals, vol. 125, no. 3, 2002, pp. 267-272.
4. M. Al-Ibrahim, H.K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Solar Energy Materials and Solar Cells, vol. 85, no. 1, 2005, pp. 13-20.

延伸閱讀