Title

以無電鍍法製備BGA無鉛複合銲錫

Translated Titles

Electroless Plating of Manufacturing Composite Pb-free Solder Joint In Ball Grid Array

DOI

10.6841/NTUT.2012.00653

Authors

黃克能

Key Words

無電鍍錫 ; BGA ; 無鉛複合銲錫 ; Electroless plating ; BGA ; Composite Pb-free

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

李文興

Content Language

繁體中文

Chinese Abstract

本研究主要是以無電鍍錫法製作無鉛複合銲錫,並分析無鉛複合銲錫之機械性質,期望達到改善球格陣列構裝中之銲錫機械性質的目的。研究中是利用無電鍍錫法先在純鐵試片上分析無電鍍錫效果,找到最佳之無電鍍錫參數,再應用於直徑小於10μm的微小鐵粉上,經過無電鍍錫法後之鐵粉增加了對於無鉛銲錫材料(Sn3Ag0.5Cu)的親和性,利用此特性可製備成無鉛複合銲錫,再進一步製作成無鉛複合銲錫球,以探討添加微小Fe金屬顆粒對基材以及銲錫接點的微結構機械性質影響。研究結果顯示無電鍍錫法在純鐵試片上於溫度70℃時之無電鍍錫可以得到最緻密的表面,不易生成沉積物影響試片,反應速率適中不會使試片產生氧化,顯示浴溫70℃可以得到最佳的效果,而50℃和90℃相對來說有反應速率太慢導致試片氧化,以及反應過於劇烈使得沉積物快速增加的缺點。 接著將鐵粉顆粒使用無電鍍錫法鍍膜後,的確可以改善鐵粉和無鉛銲錫之間的親和性,可以讓鐵粉成功加入無鉛銲錫中製作成無鉛複合銲錫,進而達到散佈強化的效果,實驗數據顯示加入無電鍍鐵粉顆粒後之無鉛銲錫的抗剪強度和抗拉強度都隨著添加量增加而增加,顯示的確可以達到散佈強化的效果。

English Abstract

In this study, mainly electroless tin plating method to manufacturing Pb-free composite solder, and analyze the mechanical properties of Pb-free composite solder, expected to achieve the purpose of improving the solder ball grid array package mechanical properties. Study is using the electroless tin plating method in the pure iron specimen to analysis the effect of electroless tin plating method, to find the best electroless tin plating parameters, and applied to a diameter less than 10μm tiny iron powder. The affinity for lead-free solder materials (Sn3Ag0.5Cu) increased after using electroless tin plating method. This feature can be manufacturing by a lead-free composite solder, further made into a lead-free composite solder ball, to explore the substrate and the microstructure of the solder joint mechanical properties by adding tiny Fe metal particles. The study results show that using electroless tin plating method on the pure iron specimen with temperature 70 ° C can be the densest surface, and it’s difficult to generate sediment impact specimen. Moderate reaction rate is not making the specimen oxidation, showing that bath temperature at 70 ℃ can get the best effect. Reaction rate is too slow to cause the specimen to oxidation at 50 ° C , and violent reaction makes the sediment increasing rapidly at 90 ° C, in the shortcomings. The iron particles using the electroless plating Sn coating can improve the affinity between iron particles and lead-free solder. Adding the iron particles into the lead-free solder become the lead-free composite solder, to achieve the dispersion strengthening effect. The experimental data show that the plating iron particles of lead-free solder shear strength and tensile strength are increased with increasing dosage, showing the dispersion strengthening effect can be achieved.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [1] 陳昱章,BGA無鉛複合銲錫之機械性質,碩士論文,國立臺北科技大學製造科技研究所,台北,2010。
    連結:
  2. [4] B. Trumble, J. Brydges, Technical progress on printed wired assemblyusing Nortel'sno-lead solder assembly process, IEEE International Symposium on Electronics & theEnvironment, 1998,pp. 112-116.
    連結:
  3. [5] D. R. Frear and P. T. Vianco, Intermetallic growth and mechanical behavior of low andhigh melting temperature solder alloys,Metallurgical Transactions A, vol. 25A, 1994,pp.1509
    連結:
  4. [8] B. Trumble, Get the Lead Out,IEEE Spectrum, 1998,pp.55-60
    連結:
  5. [9] J.W. Yoon, S.W. Kim, S.B. Jung, IMC morphology, interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate, Journal ofAlloys and Compounds, Vol. 392 , 2005 ,pp.247–252S.
    連結:
  6. [10] W. Kim, J.W. Yoon, and S.B. Jung, Interfacial Reactions and Shear Strengths betweenSn-Ag-based Pb-Free Solder Balls and Au/EN/Cu Metallization, Journal of ElectronicMaterials, Vol. 33, No. 10, 2004, pp.1182–1189.
    連結:
  7. [11] Yoshiharu Kariya and Masahisa Otsuka, Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloy, Journal of Electronic Materials, Vol.27, No. 11, 1998, pp. 1229-1235.
    連結:
  8. [12] Tac-Sang Park and Soon-Bok Lee, Mechanical Fatigue Tests of Solder Joint underMixed-mode Loading Cases, IEEE, Intel Symposium on Electronic Materials andPackaging, 2001.
    連結:
  9. [13] F. Guo, J. Lee, S. Choi, J. P. Lucas, T. R. Bieler and K. N. Subramanian, Processing andAging Characteristics of Eutectic Sn-3.5Ag Solder Reinforced with MechanicallyIncorporated Ni Particles, Journal of Electronic Materials, Vol. 30, Issue 9, 2001,pp.1073-1082.
    連結:
  10. [14] F. Guo, J. Lee, J. P. Lucas, K. N. Subramanian and T. R. Bieler, Creep Properties ofEutectic Sn-3.5Ag Solder Joints Reinforced with Mechanically Incorporated NiParticles, Journal of Electronic Materials, Vol. 30, Issue 9, 2001, pp.1222-122.
    連結:
  11. [16] W. Yang and R. W. Messler,Microstructure Evolution of Eutectic Sn-Ag SolderJoints,Journal of Electronic Materials, 23, 1994, pp. 765-772.
    連結:
  12. [17] M. Harada and R. Satoh, Mechanical Characteristics of 96.5Sn/3.5Ag Solder
    連結:
  13. [18] P. Biocca, Global Update on Lead-Free Solders, SMT, June, 1999, pp. 64-67.
    連結:
  14. [20] H. Okamoto, Binary Alloy Phase Diagrams, ed. By T. B. Massalski,ASM international,Materials Park, vol. 3, 1990,pp. 1774-1776 .
    連結:
  15. [21] H. D. Blair, T. Pan and J. M. Nicholson, Electronic Components andTechnology Conference, 1998, p.259.
    連結:
  16. [22] D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad,
    連結:
  17. B.W.Grimsley, and H.B. Tejada, Effects of Ag content on fracture resistance Of Sn–Ag–Cu lead-free solders under high-strain rate conditions, Materials ScienceandEngineering A, 2007, 460–461, pp.595–603.
    連結:
  18. [23] S. K. Kang and V. Ramachandran, Scripta Metall, 14, 1980, p.421.
    連結:
  19. [25] C. E. Ho, W. T. Chen, and C. R. Kao, Interactions Between Solder and MetallizationDuring Long-Term Aging of Advanced Microelectronic Packages,Journal of Electronic Materials, Vol.30, No.4, 2001, pp.379-385.
    連結:
  20. [26] W. Yang and R. W. Messler, Microstructure Evolution of Eutectic Sn-Ag SolderJoints,Journal of Electronic Materials, 23, 1994, pp. 765-772.
    連結:
  21. [27] M. Harada and R. Satoh,Mechanical Characteristics of 96.5Sn/3.5Ag Solder In Microbondingc, IEEE Trans,2001,pp.736-742.
    連結:
  22. [28] P. Biocca, Global Update on Lead-Free Solders, SMT, June, 1999, pp. 64-67.
    連結:
  23. [31] Yoshiharu Kariya and Masahisa Otsuka,Mechanical Fatigue Characteristics of
    連結:
  24. [32] S. W. Yoon, C. J. Park, S. H. Hong, J. T. Moon, I. S. Park and H. S. Chun, InterfacialReaction and Solder Joint Reliability of Pb-Free Solders in Lead Frame Chip ScalePackages (LF-CSP), Journal of Electronic Materials, Vol. 29, No. 10, 2000, pp.1233-1240.
    連結:
  25. [34] Tac-Sang Park and Soon-Bok Lee, Mechanical Fatigue Tests of Solder Joint under Mixed-mode Loading Cases, IEEE, Intel Symposium on Electronic Materials andPackaging, 2001.
    連結:
  26. [35] McCormack M, Jin S, Kammlott G W, Enhanced Solder Alloy Performance by Magnetic Dispersions, IEEE Trans. on Comp. Pack. and Manuf. Tech. (CPMT), Part A,Vol.17(3) ,1994,pp.452-457.
    連結:
  27. [36] Robert A. Galiano, Morris E. Fine, Growth of η Phase Scallops and Whiskers in Liquid Tin-Solid Copper Reaction Couples, JOM: the Journal of the Minerals, Metals & Materials Society, 2001, pp.33-38.
    連結:
  28. [37] H. K. Kim and K. N. Tu, Rate of Consumption of Cu in Soldering Accompanied by Ripening, Applied Physics Letters, Vol. 67, Issue 14, 1995, pp.2002-2004 .
    連結:
  29. [38] K. N. Tu, Cu/Sn Interfacial Reaction: Thin-Film Case versus Bulk Case, Materials Chemistry and Physics, Vol.46, 1996, pp.217-223.
    連結:
  30. [39] McCormack M, Jin S, Kammlott GW, Enhanced Solder Alloy Performance by
    連結:
  31. [43] J.J.Stephens, Internal Memorandum, Sandia National Laboratories,Albuquerque,NM, March 2, 1989.
    連結:
  32. [44] A. Rahn, The Basics of Soldering, John Wiely & Sons, New York,1993.
    連結:
  33. [45] LI-YIN HSIAO,Inhibiting AuSn4 Formation by Controlling the Interfacial
    連結:
  34. [46] Yu-Chih Huang,Sn–Bi–Fe thermodynamic modeling and Sn–Bi/Fe interfacial
    連結:
  35. [2] A. Zribi, A. Clark, L. Zavalij, P. Borgeseu, and E. J. Cotts, Journal of Electronic Materials, vol. 30, 2001,pp. 1157-1163.
  36. [3] D. R. Frear, J. W. Jang, J. K. Lin, C. Zhang, P. T. Vianco, and D. R. Frear,Pb-free solders for flip-chip interconnects, Journal of Materials, vol. 53, 2001,pp. 28-38.
  37. [6] D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhan, Solders for
  38. flip-chipinterconnects,Journal of Materials, vol. 53, 2001,pp. 28-38.
  39. [7] Lau, J. H.(Editor), Ball Grid ArrayTechnology, McGraw-Hill, Inc,1995
  40. [15] H. Okamoto and T. B. Massalski, in Binary Alloy Phase Diagrams, ed.By T. B. Massalski, ASM international, Materials Park, vol. 5, 1984,pp.433-434.
  41. inMicrobondingc, IEEE Trans. on Comp., Pac. and Manu. Tech., 13, 4,
  42. 1990,pp.736-742.
  43. [19] P. Nash and A. Nash, Binary Alloy Phase Diagrams, ed. By T. B.Massalski, ASMinternational, Materials Park, vol. 3, 1990,pp. 2863-2864.
  44. [24] C. H. Ma and R. A. Swalin, Acta Meter, 8, 1960, p.388.
  45. [29] 陳文泰、高振宏,”錫銅無鉛銲錫料與Ni 界面反應之研究”,中央大學化學工程與材料工程學系,國科會計畫(NSC89-2214-E-008-028).
  46. [30] David Suraski and Karl Seelig, The Current Status of Lead-Free Solder Alloys, IEEETransactions on Electronics Package Manufacturing, Vol.24, No.4, 2001, pp.244-248.
  47. Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloy, Journal of Electronic Materials, Vol.27, No. 11, 1998, pp. 1229-1235.
  48. [33] D. J. Xie, Yan C. Chan, J. K. L. Lai and I. K. Hui, Fatigue Life Estimation of SurfaceMount Solder Joints, IEEE Transactions on Component, Packaging, and ManufacturingTechnology-Part B, Vol. 19, No. 3, 1996.
  49. Magnetic Dispersions, IEEE Trans. on Comp. Pack. and Manuf. Tech. (CPMT), Part A,Vol.17(3) ,1994,pp.452-457.
  50. [40] D. D. Frear,W. B.Jones, and K. R. Kinsman, Solder Mechanics, AState of the ArtAssessment, TMS, PA,1995.
  51. [41] J. D. Braun, ASM Transactions Quarterly, 56, 1963, p.870.
  52. [42] P. J. Kay and C. A. MacKay, Trans. Inst. Matel. Finishing, 51,1973, p.85.
  53. Reaction in Solder Joints,2007
  54. reactions,2000.