Translated Titles

The effects of dissolved gas on the Leidenfrost phenomenon





Key Words

相變熱傳 ; 萊氏現象 ; 萊氏溫度 ; Phase-change heat transfer ; Leidenfrost phenomenon ; Evaporation curve



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

液滴在高溫表面,因底部產生具隔絕作用之蒸汽層,而使得液滴呈較低的速度蒸發,此現象稱為萊氏現象。發生此現象之最低溫度稱為萊氏溫度。影響萊氏溫度出現的原因計有液滴尺寸大小、液體與加熱表面的熱性質、加熱表面的粗糙度、液體的表面張力等。於不同的表面溫度下,將液滴置於加熱的平板上,量測其蒸發時間後繪製蒸發曲線的實驗方法,稱為萊氏實驗。萊氏實驗除了能夠成功呈現池沸騰實驗無法得到的過渡沸騰區域外,亦能忠實模擬噴霧冷卻的物理機制。 本研究使用純水及兩種不同濃度之飽和二氧化碳水溶液、四種液滴大小,以及6061鋁合金、二氧化鈦鍍層、純鈦鍍層三種的加熱表面進行萊氏實驗,將結果繪製為蒸發曲線,並討論溶入氣體、液滴大小與鍍層對萊氏現象的影響。並嘗試利用固液界面接觸時瞬間產生的聲音,來判斷液滴的沸騰區域。

English Abstract

When the droplet is deposited on a hot enough surface, the bottom of droplet produces insulation vapor layer to cause the droplet evaporated slowly. This is called Leidenfrost Phenomenon. The lowest temperature occurring the Leidenfrost phenomenon is called the Leidenfrost temperature. Some parameters affect the Leidenfrost temperature, such as size of droplet, thermal properties of liquid and heated surface, surface roughness of the heated surface, surface tension of the liquid, etc. The experimentation, measuring evaporated time of the droplet and drawing evaporation curve beneath different temperature, is called Leidenfrost experiment. In addition to present transition boiling region successfully that we cannot attain through pool experiments, the Leidenfrost experiments better simulate the physical mechanism of spray cooling. This investigation proceeds the Leidenfrost experiment with varied parameters, distilled water and saturated carbonated water of two kinds of concentration, four droplet sizes, and three kinds of heated surface material (6061 alloy aluminum, 6061 surface coating with Ti, 6061 surface coating with TiO2). According to the experimental results, evaporation curves are drawn, and the effects of dissolved gas, size of droplet, and surface coating are discussed.

Topic Category 機電學院 > 機電整合研究所
工程學 > 電機工程
  1. [1] Leidenfrost, J.G., “On the Fixation of Water on Diverse Fire,” Int. J. Heat Mass Transfer, vol. 9, 1974, pp. 1209-1203.
  2. [3] Bernardin, J. D. and Mudawar, I., “The Leidenfrost Point﹕Experimental Study and Assessment of Existing Models,” ASME J. Heat Transfer, vol. 40, no. 11, 1999, pp. 2579-2593.
  3. [4] Baumeister, K.J. and Simon, F.F., “Leidenfrost Temperature- its correlation for liquid metal, cryogens, hydrocarbons, and water,” ASME J. Heat Transfer, vol. 95, 1973, pp. 166-173.
  4. [5] Berenson, P.J., “Film-Boiling Heat Transition from a Horizontal Surface,” ASME J. Heat Transfer, vol. 83, 1961, pp. 351-358.
  5. [6] Henry, R.E., “A Correlation for the Minimum Film Boiling Temperature,” Chem. Eng. Prog, 1974, pp. 81-90.
  6. [7] Yu, M., “The Effect of Cooling Water Quality on Aluminum Ingot Casting, Light Metal,” The Metallurgical Society of the AIME, 1985, pp. 1331-1347.
  7. [8] Jeschar, R. and Kraushaar, H. and Griebel, H., “Influence of Gases Dissolved in Cooling Water on Heat Transfer During Stable Film Boiling,” Steel Research, vol. 67, no. 6, 1996, pp.227-234.
  8. [9] Cui, Q., Chandra, S. and McCahan, S., “The Effect of Dissolving gases or Solid in Water Droplets Boiling on a Hot Surface,” ASME J. Heat Transfer, vol.123, 2001, pp. 719-728.
  9. [10] Cui, Q., Chandra, S. and McCahan, S., “The Effect of Dissolving Salts in Water Sprays Used for Quenching a Hot Surface: Part 1-Boiling of Single Droplets,” ASME J. Heat Transfer, vol.125, 2003, pp. 326-332.
  10. [11] Craig, V.S.J., et al., “The Effect of Electrolytes on Bubble Coalescence in Water,” J. Phys. Chem., vol. 97, no. 39, 1993, pp. 10192-10197.
  11. [12] Quio, Y. M. and Chandra, S., “Experiments on Adding a Surfactant to Water Drops Boiling on a Hot Surface,” Proceeding: Mathematical, Physical and Engineering Sciences, vol. 453, 1997, pp. 673-689.
  12. [13] Menzello, S.L. and Yang, J.C., “An Experimental Study of High Weber Number Impact of Methoxy-Nonafluorobutance C4F9OCH3 (HFE-7100) and N-Heptane Droplets on A Heated Solid Surface,” Int. J. Heat and Mass Transfer, vol.45, 2002, pp. 3961-3971.
  13. [14] Bertola, V. and Sefiane, K., “Controlling secondary atomization during drop impact on hot surfaces by polymer additives,” Physics of Fluids, vol.17, no.108104, 2005, pp. 108104-108104-4.
  14. [15] Takashima, T. and Shiota, H., “Evaporation of an Oil-in-Water Type Eumulsion Droplet on a Hot Surface,” Heat Transfer-Asian Research, vol. 34, no. 7, 2005, pp. 527-537.
  15. [16] Bang, I.C. and Chang, S.H., “Boiling heat transfer performance and phenomena of Al2O3-Water nano-fluids from a plain surface in a pool,” Int. J. Heat and Mass Transfer, vol. 48, 2005, pp. 2407-2419.
  16. [17] Nagai, N. and Nishio, S., “Leidenfrost temperature on an extremely smooth surface,” Exp. Thermal and Fluid Sci., vol. 12, 1996, pp. 373-379.
  17. [18] Bernardin, J.D. and Mudawar, I., “A Cavity Activation and bubble Growth Model of the Leidenfrost Point,” ASME J. Heat Transfer, vol. 124, 2002, pp. 864-874.
  18. [19] Takasama, T., Hazuku, T., Okamoto, K., Mishima, K. and Furuya, M., “Radiation induced surface activation in Leidenfrost and Quenching phenomena,” Exp. Thermal and Fluid Sci., vol. 29, 2005, pp. 267-274.
  19. [20] Takata. Y., Hidaka, S., Yamashita, A. and Yamamoto, H., “Evaporation of water drop on a plasma-irradiated hydrophilic surface,” Int. J. Heat and Fluid Flow, vol. 25, 2004, pp. 320-328.
  20. [21] Mitsutake, T., Fumihisa, K., Oosato, T., Sayano, A., Akiba, M. and Morooka, S., “Boiling Heat Transfer Characteristics with highly Wettable Heated Surface under Forced Convection Conditions,” JSME J. Fluilds and Thermal Enginneering, vol. 47, Ser. B, no. 2, 2004, pp. 168-172.
  21. [23] Carroll, J.J., Slupsky, J.D. and Mather, A.E., “The Solubility of Carbon Dioxide in Water at Low Pressure,” J. Phys. Chem. Ref. Data, vol. 20, no. 6, 1991, pp. 1201-1209.
  22. [2] Cumo, M. and Pitimada, D., “On the Determination of the Leidenfrost Point with Sprays of Water and Low-Boiling Oragnics,” Termotecnica, vol.22, no. 8, 1974.
  23. [22] Linke, H., Aleman, B., Melling, L., Taormina, M., Francis, M., Dow-Hygelund, C., Taylor, R.P., Narayanan, V. and Stout A., “Self-Propelled Leidenfrost Droplets,” Phys. Lett., Vol. 96, no. 154502, 2006.
  24. [24] Incropera, F. P. and DeWitt, D. P., Fundamentals of Heat and Mass Transfer 6th Edition, New York: John Wiley & Sons, 1990.
  25. [25] Biance, A-L., Clanet, C., and Quéré, D., “Leidenfrost drops,” Physics of Fluids, vol. 15, no. 6, 2003, pp. 1632-1637.
  26. [26] 柯重光,LDV在不同加熱管之池沸騰現象研究,碩士論文,國立中山大學,高雄,1999。
Times Cited
  1. 林政坤(2008)。萊氏現象之自動化量測與分析。臺北科技大學機電整合研究所學位論文。2008。1-95。