透過您的圖書館登入
IP:3.140.185.147
  • 學位論文

以無機聚合材料固化/穩定化煉鋼集塵灰之研究

Study on Electric Arc Furnace Dust Solidified / Stabilized with Geopolymeric Material

指導教授 : 柯明賢 陳孝行
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


煉鋼集塵灰因含有大量重金屬而被列為有害廢棄物,然而目前台灣地區每年產生之煉鋼集塵灰大於可處理量,顯示有許多煉鋼集塵灰仍是廠內暫存。為有效解決煉鋼集塵灰之處理問題,本研究將煉鋼集塵灰摻配變高嶺石及鹼性活化液製成煉鋼集塵灰無機聚合固化體,探討不同SiO2/Na2O比與SiO2/Al2O3比對煉鋼集塵灰無機聚合固化體之抗壓強度、顯微結構與重金屬固化效果之影響,並進一步探討煉鋼集塵灰無機聚合固化體之長期穩定性及環境溶出行為。 由研究結果顯示,以SiO2/Na2O比1.25及SiO2/Al2O3比2.0製作之煉鋼集塵灰無機聚合固化體具有較佳之抗壓強度,固化體養護28天之抗壓強度可達22.9MPa,而固化體中之重金屬溶出濃度可符合毒性特性溶出試驗標準。在顯微結構方面,由XRD之分析結果顯示,煉鋼集塵灰無機聚合固化體主要結晶相為ZnFe2O4;而由SEM分析可以發現,煉鋼集塵灰無機聚合固化體表面呈現緻密但附著些許小顆粒;此外由FTIR分析結果顯示,煉鋼集塵灰無機聚合固化體具有T-O-Si鍵(T=Si或Al)之非對稱伸縮震動吸收峰。 由養護28天之煉鋼集塵灰無機聚合固化體的60天半動態溶出試驗結果顯示,煉鋼集塵灰中之重金屬於煉鋼集塵灰無機聚合固化體中具有長期穩定性,其中以SiO2/Na2O比1.25、SiO2/Al2O3比2.0所製作之煉鋼集塵灰無機聚合固化體較SiO2/Na2O比1.0、SiO2/Al2O3比2.49製作之煉鋼集塵灰無機聚合固化體的長期穩定性為佳。而在顯微結構方面,由FTIR分析結果顯示,隨著萃取時間之增加,煉鋼集塵灰無機聚合固化體中T-O-Si鍵(T=Si或Al)之非對稱伸縮震動吸收峰會往高波數位移;而由SEM分析結果顯示,經萃取後之煉鋼集塵灰無機聚合固化體表面由於酸性溶液的侵蝕會有些許孔洞;由XRD分析結果顯示,隨著萃取時間之增加,煉鋼集塵灰無機聚合固化體之主要晶相仍為ZnFe2O4。 本研究進一步利用地球化學模擬軟體(Visual MINTEQ)針對煉鋼集塵灰與煉鋼集塵灰無機聚合固化體中重金屬之環境溶出行為進行模擬,由研究結果顯示,煉鋼集塵灰及其無機聚合固化體於高pH環境中Si的溶出不似Quartz之溶出行為,而於不同pH環境中Al的溶出則均近似於Ettringite的溶出行為。又Ca的溶出於不同pH環境中有極大之差異,煉鋼集塵灰由高pH值至低pH值之Ca的溶出分別近似於Gypsum、Calcite與Gypsum的溶出行為,而煉鋼集塵灰無機聚合固化體由高pH值至低pH值之Ca的溶出分別近似於Calcite、Ettringite與Gypsum的溶出行為。另外,煉鋼集塵灰與煉鋼集塵灰無機聚合固化體中重金屬Pb、Zn與Cd的溶出則分別近似於PbO、Zn(OH)2、CdO及Cd(OH)2之溶出行為。

並列摘要


As electric arc furnace dust is one of the hazardous waste containing heavy metals, resulting in huge amounts of electric arc furnace dust to be managed. The stabilization/solidification of the electric arc dust using geopolymerization technology is described in this study. It was utilized fly ash, metakaolinite, sodium silicate and alkaline solution to prepare electric arc furnace dust geopolymerized solidification/stabilization matrices (EAFDGPSSM) in this study. The effects of curing time, SiO2/Na2O ratio and SiO2/Al2O3 ratio on compressive strength, heavy metals leachability and micro-structure of EAFDGPSSM would be investigated. In addition, the long-term stability of heavy metals in EAFDGPSSM and the leaching behavior of EAFD and EAFDGPSSM would be also described. The results indicated that the compressive strength of EAFDGPSSM prepared with SiO2/Al2O3 and SiO2/Na2O ratio respectively 2.0 and 1.25 would be higher. The leaching concentration of Pb and Cd in EAFDGPSSM cured after 28 days by TCLP method was lower than TCLP requlatory procedure limits and it showed that EAFDGPSSM could effectively immobilize Pb and Cd in electric arc furnace dust. The XRD patterns showed that the diffraction peaks were mainly caused by ZnFe2O4, NaCl and Zn(OH)2 phases present in EAFDGPSSM. The spectra of FTIR indicated that the vibrational band at 962∼1032 cm-1 was attributed to the Si-O-T (T=Si or Al) asymmetric stretching mode. The microstructures of EAFDGPSSM showed that the grain of EAFDGPSSM was compact. The semi-dynamic leaching test (SDLT) was conducted to evaluate the long-term stability of Pb in EAFDGPSSM respectively prepared with SiO2/Al2O3=2.49 and SiO2/Na2O=1.0, SiO2/Al2O3=2.0 and SiO2/Na2O=1.25 and cured after 28 days. The results carried out by SDLT showed that after 60 days extraction, the long-term stability of EAFDGPSSM prepared with SiO2/Al2O3=2.0 and SiO2/Na2O=1.25 would be better then EAFDGPSSM prepared with SiO2/Al2O3=2.49 and SiO2/Na2O=1.0. Moreover, the cumulative leaching percentage of Pb in EAFDGPSSM only reached to 51-66%. The microstructures of EAFDGPSSM showed that the grain of EAFDGPSSM would become porous after 60 days extraction. The spectra of FTIR indicated that as extraction time increased, the vibrational band of Si-O-T (T=Si or Al) asymmetric stretching mode would shift to higher wavenumbers. The pH-dependence leaching test was conducted to evaluate the leaching behavior of major elements and trace elements in EAFDGPSSM respectively prepared with SiO2/Al2O3=2.49 and SiO2/Na2O=1.0, SiO2/Al2O3=2.0 and SiO2/Na2O=1.25 and cured after 28 days.The results indicated that the leaching behavior of Si, Al , Ca, Pb, Zn and Cd was respectively controlled by solubility of Ca6Al2(SO4)3(OH)12.26H2O, CaSO4, CaCO3, PbO, Zn(OH)2, CdO and Cd(OH)2.

參考文獻


[21] 戴詩潔,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立台北科技大學材料及資源工程系碩士班,台北,2005。
[11] 黃亭瑾,電弧爐煉鋼煙塵風化對濕式除氯之影響,碩士論文,國立成功大學資源工程系,台南,2007。
[6] 劉書銜,由集塵灰及粗氧化鋅以碳熱還原法合成一維氧化鋅,碩士論文,國立台北科技大學材料及資源工程系,台北,2006。
[49] 魏培修,以無機聚合材料固化/穩定化焚化飛灰之研究,碩士論文,國立台北科技大學資源工程所,台北,2008。
[27] 張文華,以燃煤飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究,碩士論文,國立台北科技大學材料及資源工程系,台北,2006。

延伸閱讀