Title

以無機聚合材料固化/穩定化煉鋼集塵灰之研究

Translated Titles

Study on Electric Arc Furnace Dust Solidified / Stabilized with Geopolymeric Material

Authors

朱祐弘

Key Words

煉鋼集塵灰 ; 無機聚合材料 ; 固化/穩定化 ; 重金屬 ; 長期穩定性 ; 環境溶出行為 ; Electric Arc Furnace Dust ; Geopolymeric material ; Solidification/Stabilization ; Heavy metal ; Long-term stability ; Leaching behavior

PublicationName

臺北科技大學環境工程與管理研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

柯明賢;陳孝行

Content Language

繁體中文

Chinese Abstract

煉鋼集塵灰因含有大量重金屬而被列為有害廢棄物,然而目前台灣地區每年產生之煉鋼集塵灰大於可處理量,顯示有許多煉鋼集塵灰仍是廠內暫存。為有效解決煉鋼集塵灰之處理問題,本研究將煉鋼集塵灰摻配變高嶺石及鹼性活化液製成煉鋼集塵灰無機聚合固化體,探討不同SiO2/Na2O比與SiO2/Al2O3比對煉鋼集塵灰無機聚合固化體之抗壓強度、顯微結構與重金屬固化效果之影響,並進一步探討煉鋼集塵灰無機聚合固化體之長期穩定性及環境溶出行為。 由研究結果顯示,以SiO2/Na2O比1.25及SiO2/Al2O3比2.0製作之煉鋼集塵灰無機聚合固化體具有較佳之抗壓強度,固化體養護28天之抗壓強度可達22.9MPa,而固化體中之重金屬溶出濃度可符合毒性特性溶出試驗標準。在顯微結構方面,由XRD之分析結果顯示,煉鋼集塵灰無機聚合固化體主要結晶相為ZnFe2O4;而由SEM分析可以發現,煉鋼集塵灰無機聚合固化體表面呈現緻密但附著些許小顆粒;此外由FTIR分析結果顯示,煉鋼集塵灰無機聚合固化體具有T-O-Si鍵(T=Si或Al)之非對稱伸縮震動吸收峰。 由養護28天之煉鋼集塵灰無機聚合固化體的60天半動態溶出試驗結果顯示,煉鋼集塵灰中之重金屬於煉鋼集塵灰無機聚合固化體中具有長期穩定性,其中以SiO2/Na2O比1.25、SiO2/Al2O3比2.0所製作之煉鋼集塵灰無機聚合固化體較SiO2/Na2O比1.0、SiO2/Al2O3比2.49製作之煉鋼集塵灰無機聚合固化體的長期穩定性為佳。而在顯微結構方面,由FTIR分析結果顯示,隨著萃取時間之增加,煉鋼集塵灰無機聚合固化體中T-O-Si鍵(T=Si或Al)之非對稱伸縮震動吸收峰會往高波數位移;而由SEM分析結果顯示,經萃取後之煉鋼集塵灰無機聚合固化體表面由於酸性溶液的侵蝕會有些許孔洞;由XRD分析結果顯示,隨著萃取時間之增加,煉鋼集塵灰無機聚合固化體之主要晶相仍為ZnFe2O4。 本研究進一步利用地球化學模擬軟體(Visual MINTEQ)針對煉鋼集塵灰與煉鋼集塵灰無機聚合固化體中重金屬之環境溶出行為進行模擬,由研究結果顯示,煉鋼集塵灰及其無機聚合固化體於高pH環境中Si的溶出不似Quartz之溶出行為,而於不同pH環境中Al的溶出則均近似於Ettringite的溶出行為。又Ca的溶出於不同pH環境中有極大之差異,煉鋼集塵灰由高pH值至低pH值之Ca的溶出分別近似於Gypsum、Calcite與Gypsum的溶出行為,而煉鋼集塵灰無機聚合固化體由高pH值至低pH值之Ca的溶出分別近似於Calcite、Ettringite與Gypsum的溶出行為。另外,煉鋼集塵灰與煉鋼集塵灰無機聚合固化體中重金屬Pb、Zn與Cd的溶出則分別近似於PbO、Zn(OH)2、CdO及Cd(OH)2之溶出行為。

English Abstract

As electric arc furnace dust is one of the hazardous waste containing heavy metals, resulting in huge amounts of electric arc furnace dust to be managed. The stabilization/solidification of the electric arc dust using geopolymerization technology is described in this study. It was utilized fly ash, metakaolinite, sodium silicate and alkaline solution to prepare electric arc furnace dust geopolymerized solidification/stabilization matrices (EAFDGPSSM) in this study. The effects of curing time, SiO2/Na2O ratio and SiO2/Al2O3 ratio on compressive strength, heavy metals leachability and micro-structure of EAFDGPSSM would be investigated. In addition, the long-term stability of heavy metals in EAFDGPSSM and the leaching behavior of EAFD and EAFDGPSSM would be also described. The results indicated that the compressive strength of EAFDGPSSM prepared with SiO2/Al2O3 and SiO2/Na2O ratio respectively 2.0 and 1.25 would be higher. The leaching concentration of Pb and Cd in EAFDGPSSM cured after 28 days by TCLP method was lower than TCLP requlatory procedure limits and it showed that EAFDGPSSM could effectively immobilize Pb and Cd in electric arc furnace dust. The XRD patterns showed that the diffraction peaks were mainly caused by ZnFe2O4, NaCl and Zn(OH)2 phases present in EAFDGPSSM. The spectra of FTIR indicated that the vibrational band at 962∼1032 cm-1 was attributed to the Si-O-T (T=Si or Al) asymmetric stretching mode. The microstructures of EAFDGPSSM showed that the grain of EAFDGPSSM was compact. The semi-dynamic leaching test (SDLT) was conducted to evaluate the long-term stability of Pb in EAFDGPSSM respectively prepared with SiO2/Al2O3=2.49 and SiO2/Na2O=1.0, SiO2/Al2O3=2.0 and SiO2/Na2O=1.25 and cured after 28 days. The results carried out by SDLT showed that after 60 days extraction, the long-term stability of EAFDGPSSM prepared with SiO2/Al2O3=2.0 and SiO2/Na2O=1.25 would be better then EAFDGPSSM prepared with SiO2/Al2O3=2.49 and SiO2/Na2O=1.0. Moreover, the cumulative leaching percentage of Pb in EAFDGPSSM only reached to 51-66%. The microstructures of EAFDGPSSM showed that the grain of EAFDGPSSM would become porous after 60 days extraction. The spectra of FTIR indicated that as extraction time increased, the vibrational band of Si-O-T (T=Si or Al) asymmetric stretching mode would shift to higher wavenumbers. The pH-dependence leaching test was conducted to evaluate the leaching behavior of major elements and trace elements in EAFDGPSSM respectively prepared with SiO2/Al2O3=2.49 and SiO2/Na2O=1.0, SiO2/Al2O3=2.0 and SiO2/Na2O=1.25 and cured after 28 days.The results indicated that the leaching behavior of Si, Al , Ca, Pb, Zn and Cd was respectively controlled by solubility of Ca6Al2(SO4)3(OH)12.26H2O, CaSO4, CaCO3, PbO, Zn(OH)2, CdO and Cd(OH)2.

Topic Category 工程學院 > 環境工程與管理研究所
工程學 > 土木與建築工程
Reference
  1. [3] A. G. Guezennec, J. C. Huber, F. Patisson, P. Sessiecq, J. P. Birat and D. Ablitzer, “Dust formation in Electric Arc Furnace: Birth of the particles,” Powder Technology, vol.157, 2005, pp. 2-11.
    連結:
  2. [6] 劉書銜,由集塵灰及粗氧化鋅以碳熱還原法合成一維氧化鋅,碩士論文,國立台北科技大學材料及資源工程系,台北,2006。
    連結:
  3. [7] C.A. Pickles, “Thermodynamic modelling of the multiphase pyrometallurgical processing of electric arc furnace dust,” Minerals Engineering, vol.22, 2009, pp.977-985.
    連結:
  4. [8] P. Oustadakis, P.E. Tsakiridis, A. Katsiqpi and S. Agatzini-Leonardou, “Hydrometallurgical process for zinc recovery from electric arc furnace dust(EAFD) PartI: Characterization and leaching by diluted sulphuric acid,” Journal of Hazardous Materials, vol.179, 2010, pp. 1-7.
    連結:
  5. [9] A. I. Fernandez, J. M. Chimenos, N. Raventos, L. Miralles and F. Espiell, “Stabilization of electrical acr furnace dust with low-grade MgO prior to landfill,” Journal of Enviromental Engineering, vol.129, 2003, pp.275-279.
    連結:
  6. [10] G. Laforest and J. Duchesne, “Characterization and leachability of electric arc furnace dust made from remelting of stainless steel,” Journal of Hazardous Materials, vol.135, no.B, 2006, pp.156-164.
    連結:
  7. [14] B.K. Thomas and D.J. Fray, “Leaching of oxide zinc materials with chlorine and chlorine hydrate,” Metallurgical Transactions, vol.12, no.B, 1981, pp.559-563.
    連結:
  8. [16] T. Havlik, M. Turzakova, S. Stopic and B. Friedrich, “Atmospheric laeching of EAF dust with diluted sulphuric acid,” Hydrometallurgy, vol. 77, 2005, pp.41-50.
    連結:
  9. [17] G. Orhab, “Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium,” Hydrometallurgy, vol. 78, 2005, pp. 236-245.
    連結:
  10. [18] G. Salihoglu and V. Pinarli, “Steel foundry electric arc furnace dust management: Stabilization by using lime and Portland cement,” Journal of Hazardous Materials, vol. 153, 2008, pp. 1110-1116.
    連結:
  11. [19] M. Maslehuddin, F. R. Awan, M. Shameem, M. Ilbrahim and M. R. Ali, “Effect of electric arc furnace dust on the properties of OPC and blended cement concretes,” Construction and Building Materials, 2010, Article in press..
    連結:
  12. [20] J. Davidovits, “Geopolymers: inorganic polymeric new materials”, Journal of Thermal Analysis, vol. 37, 1991, pp. 1633-1656.
    連結:
  13. [21] 戴詩潔,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立台北科技大學材料及資源工程系碩士班,台北,2005。
    連結:
  14. [22] I. Maragkos, I. P. Giannopoulou and D. Panias, “Synthesis of ferronickel slag-based geopolymers,” Minerals Engineering, vol. 22, 2009, pp.196-203.
    連結:
  15. [23] J. C. Swanepoel and C. A. Strydom, “Utilisation of fly ash in a geopolymeric materials”, Applied Geochemistry, vol. 17, no.8, 2002, pp. 1143-1148.
    連結:
  16. [24] J.Z. Xu, Y.L. Zhou, Q. Chang and H.Q. Qu, “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers,” Materials Letters, vol. 60, 2006, pp. 820-822..
    連結:
  17. [25] R. Slavik, V. Bednarik, M. Vondruska and A. Nemec, “Preparation of geopolymeric from fluidized bed combustion bottom ash,” Journal of Materials Processing Technology, vol.200, 2008, pp.265-270.
    連結:
  18. [27] 張文華,以燃煤飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究,碩士論文,國立台北科技大學材料及資源工程系,台北,2006。
    連結:
  19. [28] S. Martin and J.D.M. Kenneth, “Microstructure of sodium polysialatesiloxo geopolymer,” Ceramics International, vol.31, 2005, pp.433–437.
    連結:
  20. [30] J. Davidovits, and M. Davidovits, “Geopolymer: Room-tempurature ceramic matriz for composites,” Ceramic Engineering Science Proceedings, vol. 9, 1988, pp. 835-841.
    連結:
  21. [31] J. Davidovits, “Geopolymers: Inorganic polymeric new materials,” Journal of Thermal Analysis, vol. 37, 1991, pp. 1633-1656.
    連結:
  22. [33] E. Alvarez-Ayuso, X. Querol, F, Plana, A. Alastuey, N. Moreno, M. Izquierdo, O. Font, T. Moreno, S. Diez, E. Vazquez and M. Barra, “Enviromental, physical and structural characterization of geopolymer matrixes synthesized from coal (co-)combustion fly ashes,” Journal of Hazardous Materials, vol.154, 2008, p.p.175-183.
    連結:
  23. [34] P. Chindaprasirt, C. Jaturapitakkul, W. Chalee and U. Rattanasak, “Comparative study on the characteristics of fly ash and bottom ash geopolymers,” Waste Management, vol.29, 2009, p.p.539-543.
    連結:
  24. [36] D. L. Y. Kong, J. G. Sanjayan and K. S. Crentsil, “Factors affecting the performance of metakaolin geopolymers exposed to elevated temperature,” Journal of Materials Sciences, vol. 43(3), 2008, pp. 824-831.
    連結:
  25. [37] L. Verdolotti, S. Iannace, M. Lavorgna and R. Lamanna, “Geopolymerization reaction to consolidate incoherent pozzolanic soil,” Journal of Materials Science, vol. 43, 2008, pp. 865-873.
    連結:
  26. [38] F. P. Torgal, J.P. Castro-Gomes and S. Jalali, “Investigations on mix design of tungsten mine waste geopolymeric binder,” Construction and Building Materials, vol.22, 2008, pp.1939-1949.
    連結:
  27. [39] P. Chindaprasirt, T. Chareerat and V. Sirivivatnanon, “Workability and strength of coarse high calcium fly ash geopolymer,” Cement & Concrete Composites, vol. 29, 2007, pp. 224-229.
    連結:
  28. [40] J.C. Swanepoel and C.A. Strydom, “Utilisation of fly ash in a geopolymeric materic,” Applied Geochemistry, vol. 17, no. 8, 2002, pp. 1143-1148.
    連結:
  29. [42] S. Alonso and A. Palomo, “Calorimetric study of alkaline activation of calcium hydroxide – metakaolin solid mixtures,” Cement and Concrete Research , vol. 31, 2001, pp. 25-30.
    連結:
  30. [43] J.G.S. Van Jaarsveld, J.S.J. Van Deventer and A. Schwartzman, “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics,” Minerals Engineering, vol. 12, no. 1, 1999, pp. 75-91.
    連結:
  31. [44] J.Z. Xu, Y.L. Zhou, Q. Chang and H.Q. Qu, “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers,” Materials Letters, vol. 60, 2006, pp. 820-822.
    連結:
  32. [45] J.G.S. Van Jaarsveld, J.S.J. Van Derventer and G. C. Luckey, “A comparative study of kaolinite versus metakaolinite in fly ash based geoploymers containing immobilized metals,” Chemical Engineering, vol. 191, 2004, pp. 531-549.
    連結:
  33. [46] J.W. Phair, J.S.J. van Deventer, J.D. Smith, “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers”,” Applied Geochemistry, vol. 19, 2004, pp. 423-434.
    連結:
  34. [47] Y. Zhang, W. Sun, Q. Chen and L. Chen, “Synthesis and heavy metal immobilization behaviors of slag based geopolymer,” Journal of Hazardous Materials, vol. 143, 2007, pp. 206-213.
    連結:
  35. [48] C. Fernandez Pereira, Y. Luna, X. Querol, D. Antenucci and J. Vale, “Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers,” Fuel, vol.88, 2009, pp.1185-1193.
    連結:
  36. [49] 魏培修,以無機聚合材料固化/穩定化焚化飛灰之研究,碩士論文,國立台北科技大學資源工程所,台北,2008。
    連結:
  37. [50] I. Lancellotti, E. Kamseu, M. Michelazzi, L. Barbieri, A. Corradi and C. Leonelli, “Chemical stability of geopolymers containing municipal solid waste incinerator fly ash,” Waste Management, vol.30 , 2010, pp.673-679.
    連結:
  38. [51] L. Zheng, W.Wang and Y. Shi, “The effect of alkaline dosage and Si/Al ratio on the immobilization of metals in municipal solid waste incineration fly ash-based geopolymer,” Chemosphere, vol.79, 2010, pp.665-671.
    連結:
  39. [52] D. S. Kosson, H. A. Van der sloot, F. Sanchez and A. C. Garrabrants, “An integrated framework for evaluating leaching in waste management and utilization of secondary materials,” Environmental Engineering Science, vol.19, 2002, pp.159-204.
    連結:
  40. [55] Y. Zhang, J. Jiang and M. Chen, “MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash,” Journal of Envrionmental Sciences, vol. 20, 2008, pp.1398-1402.
    連結:
  41. [56] C.K. Yip, G.C. Lukey and J.S.J. van Deventer, “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation,” Cement and Concrete Research, vol. 35, 2005, pp. 1688-1697.
    連結:
  42. [58] J.G.S. Van Jaarsveld, J.S.J. Van Deventer and A. Schwartzman, “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics,” Minerals Engineering, vol. 12, no. 1, 1999, pp. 75-91.
    連結:
  43. [1] R.T. Fruehan, “Scrap in Iron and Steelmaking,” Recycle and Secondary Recovery of Metal,” Edited by P.R. Taylor, H.Y. Sohn and N. Jarrett, the Metallurgical Society, 1991, pp. 31-38.
  44. [2] 李宗立,電弧爐煉鋼煙塵之特性與資源化之研究,博士論文,國立成功大學礦冶及材料科學研究所,台南,1993。
  45. [4] 黃千紋,利用煉鋼電弧爐熔融處理垃圾焚化飛灰之效益評估,碩士論文,國立中山大學環境工程研究所,高雄,2005。
  46. [5] 中華民國行政院環保署事業廢棄物申報系統,全國事業廢棄物申報統計,2008。
  47. [12] J. Leidner, “Plastics waste-recovery of economic value,” Marcel Dekker, New York, 1981, pp.293.
  48. [13] W. Riesenkampf, M. Hamakiewicz, S. Balagopalan, S. Jasienska, J. Korecki and Z. Obuszko,”Structure of magnesium-containing zinc calcine,” Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, vol.93, 1984, pp.59-63.
  49. [15] 章裕民、邱嘉川、王鈞聯,大型垃圾焚化廠灰渣重金屬含量特性及其管理策略之研究,第十六屆環境規劃與管理研討會論文集,2003。
  50. [26] D.C. Comrie and J. Davidovits, “Long term durability of hazardous toxic and nuclear waste disposals,” Geopolymer 88, France, 1998, pp. 125-134.
  51. [29] J. Davidovits, “Chemistry of geopolymeric systems terminology,” Proceeding of Geopolymer 99 2nd International Conference, France, 1999, pp. 9-37.
  52. [32] J. Davidovits, “Geopolymer chemistry and applications,” Geopolymer Institute, France, 2008, pp. 61-76.
  53. [35] R.A. Flercher, K.J.D. MacKenzie and C.L. Nicholson, “The composition range of alumino silicate geopolymers,” Journal of the European Ceramic Society, vol. 25, 2005, pp. 1471-1477.
  54. [41] P. Duxson, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo and J.S.J. van Deventer, “Geopolymer technology: the current state of the art,” Journal Materials Science, vol. 42, 2007, pp. 2917-2933.
  55. [53] H.A. Van der Sloot and J.J. Dijkstra, “Development of horizotally standardized leaching tests for construction materials: a material based or relese based approach? Identical leaching mechanisms for different materials”, 2004.
  56. [54] 以歐盟pH關聯性溶出試驗(TS14429)探討轉爐石之溶出特性,中國鋼鐵股份有限公司研究報告,2009。
  57. [57] P. Duxson, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo and J.S.J. van Deventer, “Geopolymer technology: the current state of the art,” Journal Materials Science, vol. 42, 2007, pp. 2917-2933.
  58. [59] T. Astrup, J. J. Dijkstra, R. N. J. Comans, H. A.Van Der Sloot and T. H. Christensen, ”Geochemical modeling of leaching from MSWI ari-pollution-control residues,” Environment Science and Technology, vol.40, 2006, p.p.3551-3557.