Title

合成核殼型奈米顆粒及其應用於剪切增稠流體之研究探討

Translated Titles

Synthesis of Core-Shell Nanoparticles and Its Application as Shear Thickening Fluid

Authors

沈情

Key Words

剪切增稠流體 ; 液態裝甲 ; 黏度 ; 流變性質 ; 核殼型顆粒 ; shear thickening fluid ; liquid armor ; viscosity ; rheological property ; core/shell particle

PublicationName

臺北科技大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

郭文正;戴子安

Content Language

繁體中文

Chinese Abstract

剪切增稠流體(shear thickening fluid),為非牛頓流體的一種,其特徵為在低剪切速率時黏度較低,表現出液體之狀態,而於高剪切速率下,黏度則會急速上升。此種流體性質可被應用於國防液態裝甲(liquid armor)之研究,即在平日低速活動時呈現有如輕柔衣物的特性,但若突然施予高速衝擊,黏度會瞬間提高,產生固體之特性,達到防護作用。目前液態裝甲主要是以二氧化矽作為剪切增稠流體中之主要顆粒,但研究結果顯示其抗穿刺效果極為有限,僅能抵檔低速外力之撞擊。因此本研究提議將具有剪切增稠性質之二氧化矽合成在高硬度的氧化鋁上,合成核殼型(氧化鋁/二氧化矽)奈米微粒作為其分散相,結合氧化鋁及二氧化矽之優點,有效提升液態裝甲之防護作用。本研究使用溶膠-凝膠法(sol-gel method)將氧化鋁奈米微粒與四乙氧基矽烷(TEOS)進行縮合反應,在氧化鋁奈米微粒上長出二氧化矽外殼,且利用動態光散射粒徑分析儀、穿透式電子顯微鏡及介面電位分析儀量測證明成功的合成出核殼型(氧化鋁/二氧化矽)奈米微粒。再將核殼型(氧化鋁/二氧化矽)奈米微粒利用超音波震盪棒分散在聚乙二醇中並配製成不同體積分率之分散液,利用流變儀(rheometer)觀察二氧化矽披覆在氧化鋁表面上的流變性質,也就是其在高剪切速率下是否有剪切增稠效應,最後探討核殼型(氧化鋁/二氧化矽)奈米微粒之剪切增稠現象應用於液態裝甲之可行性及全面最佳性質。

English Abstract

Shear thickening fluid, a type of non-Newtonian fluid, changes viscosity based on shear rate. It has low viscosity at low shear rates, and high viscosity at high shear rates. Thus, this fluid stays mobile under normal conditions, but swiftly hardens upon high-speed impact, resulting in a material useful in liquid armor. So far, most studies have focused on silica-based material as the primary particles in shear thickening fluids, but they often show limited resistance to puncturing. Herein, an approach to synthesize core-shell (alumina/silica) nanoparticles, which can be used as the dispersed phase in the liquid armor materials. Notably, the combination of alumina and silica materials shows significant advantage for enhancing the protective properties of the liquid armor. The core-shell nanoparticles in this study were synthesized using a sol-gel process wherein the silica shell was grown on alumina nanoparticles via a condensation reaction with TEOS. Subsequently, characterization was performed through dynamic light scattering, TEM, and zeta potential measurements. Rheometer measurements were also made using the as-synthesized nanoparticles (treated via sonication) dispersed in a polyethylene glycol medium with varying volume fractions. Thus, the rheological properties of the core-shell system could be investigated and the shear thickening phenomenon observed at high shear rates. Finally, the application of alumina/silica core-shell nanoparticles in liquid armor and the optimization of their comprehensive feasibility and rheological properties are discussed.

Topic Category 工程學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. 1. R. G. Egres Jr.; M. J. Decker.; C. J. Halbach.; Y. S. Lee.; J. E. Kirkwood.; K. M.
    連結:
  2. Application as Shear Thickening Fluid”, National Taiwan University;
    連結:
  3. Master Thesis, July, 2013.
    連結:
  4. concentrated suspensions. II. Theory
    連結:
  5. 7. Bender J, Wagner NJ (1996) Reversible shear thickening inmonodisperse and
    連結:
  6. bidisp erse colloidal dispersions. J Rheol 40:899–916
    連結:
  7. 8. J. W. Bender.; N. J. Wagner.; Concentrated Suspensions 1995, 172, 171-184.
    連結:
  8. 9. D. Breit.; Nonlinear Analysis: Theory, Methods & Applications 2012, 75,
    連結:
  9. 10. N. J. Wagner.; John F. Brady.; Physics Today 2009, 62, 27-32.
    連結:
  10. Composites Science and Technology 2007, 67, 565-578.
    連結:
  11. Kirkwood.; N. J. Wagner.; Industrial Forming Processes 2004
    連結:
  12. Shear Thickening of Concentrated Colloidal Dispersions," Journal of
    連結:
  13. 15. H. A. Barnes, "Shear-Thickening Dilatancy," in Suspensions of Nonaggregating
    連結:
  14. 16. R Larson ;The Structure and Rheology of Complex Fluids 2011
    連結:
  15. 17. Y. S. Lee, E. D. Wetzel and N. J. Wagner, "The Ballistic Impact Characteristics
    連結:
  16. I. M. Pepe.; Powder Technology 2013, 237, 117-124
    連結:
  17. and Interface Science 2011, 356, 404-411
    連結:
  18. Journal of Controlled Release 2006, 116, 295-303
    連結:
  19. 2009, 349, 145-150
    連結:
  20. 22. P. S. Singh.; Journal of Colloid and Interface Science 2008, 325, 207-214
    連結:
  21. 23. A. Hou.; Y. Shi.; Y. Yu.; Carbohydrate Polymers 2009, 77, 201-205
    連結:
  22. 25. S. R. Veith.; M. Perren.; S. E. Pratsinis.; Journal of Colloid and Interface
    連結:
  23. Science 2005, 283, 495-502
    連結:
  24. 26. I. M. Arafa. ; M. M. Fares. ; A. S. Barham.; European Polymer Journal 2004,
    連結:
  25. Dispersibility of Aqueous Alumina Suspension in Presence of Darvan C,"
    連結:
  26. Structure of Aqueous Al2O3 Suspensions," Ceramics International, 2003,
    連結:
  27. 36. J.J. Lin, “Study of Impact Resistance of Composites Containing Shear
    連結:
  28. Thickening Fluid”, National Taipei University of Technology; Master Thesis,
    連結:
  29. July, 2013.
    連結:
  30. 38. P. V. Christensen.; M. L. Christensen.; K.Keiding. Journal of Colloid and
    連結:
  31. 39. Y. J. Chen, “Concentrated dispersion or colloidal gel formed by SiC particles”,
    連結:
  32. National Central University; Master Thesis, June, 2009.
    連結:
  33. 41. J. W. Bender.; N. J. Wagner. Concentrated Suspensions 1995, 172, 171-184
    連結:
  34. Kirkwood.; N. J. Wagner. Composites Science and Technology 2007, 67,
  35. 565-578.
  36. 2. B. J. Maranzano.; N. J. Wagner.; Journal of Rheology 2001, 45, 1205-1222.
  37. 3. S.-S. Chien, “Synthesis of Alumina and Core-Shell Nanoparticles and Their
  38. 4. http://www.genius-tech.com.tw/page9.php
  39. 5. Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in
  40. concentrated suspensions. I. Observation of a flowinstability. J Rheol 16:155–
  41. 173
  42. 6. Hoffman RL (1974) Discontinuous and dilatant viscosity behavior in
  43. 5549-5560.
  44. 11. M. J. Deckera.; C. J. Halbacha.; C. H. Nama.; N. J. Wagnera.; E. D. Wetzelb.;
  45. 12. E. D. Wetzel.; Y. S. Lee.; R. G. Egres Jr.; K. M. Kirkwood.; J. E.
  46. 13. E. D. Wetzel.; N. J. Wagner.; Army Science Conference 2002.
  47. 14. B. J. Maranzano and N. J. Wagner, "The Effects of Particle Size on Reversible
  48. Chemical Physics, 2001, 114(23), pp. 10514.
  49. Solid Particles Dispersed in Newtonian Liquids," Journal of Rheology, 1989,
  50. 33(2), pp. 329-366.
  51. of KevlarR Woven Fabrics Impregnated with a Colloidal Shear Thickening
  52. Fluid," Journal of Materials Science, 2003, 38(13), pp. 2825-2833
  53. 18. L. B. Capeletti.; J. Henrique.; Z. D. Santos.; E. Moncada.; Z. N. Da Rocha.;
  54. 19. I. Chepurna.; R. Smotraev.; V. Kanibolotsky.; V. Strelko.; Journal of Colloid
  55. 20. D. Teoli.; L. Parisi.; N. Realdon.; M. Guglielmi.; A. Rosato.; M. Morpurgo.;
  56. 21. C. Oh.; Y. G. Lee, T. S. Choi.; C. U. Jon.; S. G. Oh.; Colloids and Surfaces
  57. 24. H. Ye.; X. Zhang.; Y. Zhang.; L. Ye.; B. Xiao.; H. Lv.; B. Jiang.; Solar Energy
  58. Materials and Solar Cells 2011, 95, 2347-2351
  59. 40, 1477-1487
  60. 27. Y. Xiao.; J. Shen.; Z. Xie.; B. Zhou.; G. Wu.; J. Mater. Sci. 2007, 23,
  61. 504-508.
  62. 28. K. M. S. Meera.; R. M. Sankar. ; A. Murali.; S. N. Jaisankar.; A. B. Mandal.;
  63. Colloids and Surfaces 2012, 90, 204-210
  64. 29. V. Purcar.; I. Stamatin.; O. Cinteza.; C. Petcu.; V. Raditoiu.; M. Ghiurea.;
  65. T. Miclaus.; Surface and Coatings Technology 2012, 206, 4449-4454
  66. 30. 薛敬和, "高分子化學," 台北, 高立圖書有限公司, 1998.
  67. 31. 劉陽橋, 高孫, "奈米粉體的分散及表面改性," 台北, 五南圖書出版股份有
  68. 限公司, 2005
  69. 32. 馬振基, "奈米材料科技原理與應用," 台北, 全華科技圖書股份有限公司,
  70. 2003.
  71. 33. R. R. Rao, H. N. Roopa and T. S. Kannan," Effect of PH on the Dispersability
  72. of Silicon Carbide Powders in Aqueous Media," Ceramics International, 1999,
  73. 25(3), pp. 223-230.
  74. 34. B. P. Singh, S. Bhattacharjee, L. Besra and D. K. Sengupta, "Evaluation of
  75. Ceramics International, 2004, 30(6), pp. 939-946.
  76. 35. W. J. Tseng and C. H. Wu, "Sedimentation, Rheology and Particle-Packing
  77. 29(7), pp. 821-828.
  78. 37. L. A.Clementi.; J. R. Vega.; L. M. Gugliotta.; A. Quirantes.; Journal of
  79. Quantitative Spectroscopy and Radiative Transfer 2012, 113, 2255-2264.
  80. Interface Science 2011, 356, 681-689.
  81. 40. S.-F. Wang et al. / Materials Science and Engineering A 395(2005) 148–152