Title

雙不確定性穩健最佳化模式建置應用在供應商評選

Translated Titles

Development of Robust Optimization Model with Two Uncertainties in Supplier Selection

Authors

蔡宗耆

Key Words

穩健最佳化 ; 供應鏈管理 ; 多不確定性 ; Robust Optimization ; Supply Chain Management ; Multi-Uncertainty

PublicationName

臺北科技大學工業工程與管理系碩士班學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

車振華

Content Language

繁體中文

Chinese Abstract

隨著產業競爭越來越激烈,決策者不只要確保能快速生產出消費者所需要的產品,還要盡量地壓低所付出的成本,因此在供應鏈管理中供應商評選成為一個重要的環節。成本包含了購買與製造時的固定成本,以及因不確定性而造成的浪費成本;值得注意的是,由於不確定性是無法避免,且是影響決策者的一個重要因素,固許多文獻都在探討如何控制一個不確定性或將其影響減至最低。然而,在現實生活中,有許多不確定性會同時影響,且彼此之間有交互作用而造成連動的衝擊,因此本研究希望藉由改良舊有的穩健最佳化的方法,來控制兩個不確定性在交互作用時所造成的影響。 本研究在考量供應商生產及運輸可靠度評選問題的背景下,欲發展出一個穩健最佳化模式;此外,以非支配解基因演算法作為決穩健最佳化問題的研究方法。透過穩健代價的分析,探討其與保護程度之間的關係,並將穩健最佳化模式與確定性模式的結果,提供決策者是否有需執行穩健規劃之必要性。

English Abstract

As the industrial competition become increasingly intense, decision makers must not only ensure that products required by consumers can be quickly produced, but also try to drive down the production costs. As a result, the supplier selection in supply chain management becomes an important factor. The production costs include both the fixed costs in the purchase and manufacture process and idling costs caused by the uncertainty involved in the production process. Uncertainty has always been an important factor affecting decisions for the decision makers. Due to the uncertainty is unavoidable, so many researches have been devoted in discussing how to control an uncertainty or minimize their impacts. However, in reality, there are many uncertainties cause effects simultaneously, and the interactions between the uncertainties often caused serial impacts consequentially. The purpose of this study is to control the impacts of interactions caused by two uncertainties by improving the traditional robust optimization method. Therefore, this study aims to develop a robust optimization model to deal with uncertainties in supply chain management, in particular the vendor production reliability and transportation supplier reliability upon supplier selection. In addition, this study used non-dominated sorting genetic algorithms in aid of solving robust optimization problem. Finally, by analyzing robust optimization, this study discuss the relationship between the degree of protection and consideration of sound and robust optimization model; and further inquire the results of the deterministic model in order to provide the decision-makers necessary references in deciding whether to perform robust planning.

Topic Category 管理學院 > 工業工程與管理系碩士班
工程學 > 工程學總論
社會科學 > 管理學
Reference
  1. 1. A. Ben-Tal and A. Nemirovski, “Robust solutions of Linear Programming problems contaminated with uncertain data” Mathematical Programming, vol. 88, 2000, pp. 411-424.
    連結:
  2. 2. A. Ben-Tal and A. Nemirovski, “Robust solutions of uncertain linear programs, “Operations Research Letters, vol. 25, no. 1, 1999, pp. 1-13.
    連結:
  3. 3. A. L. Soyster, “Convex programming with set-inclusive constraints and applications to inexact linear programming, ”Operation Research, vol. 21, no. 5, 1973, pp. 1154-1157.
    連結:
  4. 4. A. R. Rahimi-Vahed, S. M. Mirghorbani and M.Rabbani, “A new particle swarm algorithm for a multi-objective mixed-model assembly line sequencing problem,” Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 11, no. 10, 2007, pp. 997-1012.
    連結:
  5. 6. C. Bohle, S. Maturana and J. Vera, ”A robust optimization approach to wine grape harvesting scheduling,” European Journal of Operational Research, vol. 200, 2010, pp. 245-252.
    連結:
  6. 7. C. Li and S. Liu, “A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment,” Applied Mathematical Modelling, vol. 37, 2013, pp. 707-718.
    連結:
  7. 9. D. Bertsimas and A. Thiele, ”A Robust Optimization Approach to Inventory Theory,” Operation Research, vol. 54, no. 1, 2006, pp. 150-168.
    連結:
  8. 10. D. Bertsimas, M. Sim, “Robust discrete optimization and network flows,” Mathematical Programming, vol. 98, no. 1, 2003, pp. 49-71.
    連結:
  9. 11. D. Bertsimas, M. Sim, “The Price of Robustness,” Operation Research, vol. 52, no. 1, 2004, 35-53.
    連結:
  10. 14. F. Pan and R. Nagi, “Robust supply chain design under uncertain demand in agile manufacturing, “Computers & Operations Research, vol. 37, no. 4, 2010, pp. 668-683.
    連結:
  11. 15. G. W. Dickson, “An analysis of vender selection systems and decisions,” Journal of Purchasing, vol. 2, no. 1, 1966, pp. 5-17.
    連結:
  12. 16. H. F. Wang and H. W. Hsu, “A closed-loop logistic model with a spanning-tree based genetic algorithm,” Computers & Operations Research, vol. 37, no. 2, 2010, pp. 376-389.
    連結:
  13. 17. H. Omrani, “Common weights data envelopment analysis with uncertain data: A robust optimization approach,” Computers & Industrial Engineering, vol. 66, no.1, 2013, pp. 1163-1170.
    連結:
  14. 20. J. M. Mulvey, R. J. Vanderbei and S. A. Zenios, “Robust optimization of large scale systems” Operation Research, vol. 43, no. 2, 1995, pp. 264-281.
    連結:
  15. 21. J. Rezaei and M. Davoodi, “Multi-objective models forlot-sizing with supplier selection,” Int. J. Production Economics, vol. 130, no. 1, 2011, pp. 77-86.
    連結:
  16. 22. Joao et al. , “Robust optimization approach to regional wastewater system planning,” Journal of Environmental Management, vol. 109, 2012, pp. 113-122
    連結:
  17. 25. M. Ang, Y. F. Lim and M. Sim, “Robust Storage Assignment in Unit-Load Warehouses,” Management Science, vol. 58, no. 11, 2012, pp. 2114-2130
    連結:
  18. 26. Mirzapour et al. , “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty,” Int. J. Production Economics, vol. 134, 2011, pp. 28-42.
    連結:
  19. 27. N. Srinivas and K. Deb, “Multi-objective optimization using non-dominated sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, 1994, pp. 221-248.
    連結:
  20. 28. Nalan and Dessislava, “A robust optimization approach to asset-liability management under time-varying investment opportunities,” Journal of Banking & Finance, vol. 37, 2013, pp. 2031-2041.
    連結:
  21. 29. P. Hajela, C. Y. Lin, “Genetic search strategies in multi-criteria optimal design,” Structural and Multidisciplinary Optimization, vol. 4, no. 2, 1992, pp. 99-107.
    連結:
  22. 30. Q. H. Wu and Y. J. Cao, “Stochastic optimization of control parameters in genetic algorithms,” IEEE International Conference on Evolutionary Computation, vol. 13, no. 16, 1997, pp. 77-80.
    連結:
  23. 32. S. C. H. Leung, S. O. S. Tsang, W. L. Ng and Y. Wu, “A robust optimization model for multi-site production planning problem in an uncertain environment, “ European Journal of Operational Research, vol. 181, no. 1, 2007, pp. 224-238.
    連結:
  24. 33. S. Onut, S. S. Kara and E. Işik, “Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company, “Expert Systems with Applications, vol. 36, no. 2, 2009, pp. 3887-3895.
    連結:
  25. 36. W. C. Yeh and M. C. Chuang, “Using multi-objective genetic algorithm for partner selection in green supply chain problems,” Expert Systems with Applications, vol.38, no. 1, 2011, pp. 4244-4253.
    連結:
  26. 37. Y. K. Lin and C. T. Yeh, “Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS,” European Journal of Operational Research, vol. 218, no. 3, 2012, pp. 735-746.
    連結:
  27. 38. Y. Yusoff, M. S. Ngadiman and A. M. Zain, ”Overview of NSGA-II for Optimizing Machining Process Parameters,” Procedia Engineering, vol. 15, 2011, pp. 3978 -3983.
    連結:
  28. 5. C. A. Weber, J. R. Current and W. C. Benton, “Vendor selection criteria and methods,” European Journal of Operational Research, vol. 50, no. 1, 1991, pp. 2-18.
  29. 8. C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization,” Proceedings of the Fifth International Conference on Genetic Algorithms, Ed. San Mateo, CA: Morgan Kauffman, 1993, pp. 416-423.
  30. 12. D. V. Veldhuizen and G. Lamont, “Multi-objective evolutionary algorithm test suites,” Proceedings of the 1999 ACM symposium on Applied computing, New York, 1999, pp. 351-357.
  31. 13. F. H. Knight, Risk, Uncertainty, and Profit. Boston, MA: Hart, Schaffner & Marx; Houghton Mifflin Company 1921, pp. 197-233.
  32. 18. I. Rojas, J. Gonzalez, H. Pomares, J. J. Merelo, P. A. Castillo and G. Romero, “Statistical analysis of the main parameters involved in the design of a genetic algorithm,” IEEE Transactions on Systems, Man and Cybernetics, Part C, vol. 32, no. 1, 2002, pp. 31-37.
  33. 19. J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” Proceedings of the First International Conference on Genetic Algorithms, Hillsdale, USA, 1985, pp. 93-100.
  34. 23. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, 2002, pp. 182-197.
  35. 24. L. de Boer, E. Labro, P. Morlacchi, “A review of methods supporting supplier selection, ”European Journal of Purchasing & Supply Management, vol. 7, no. 1, 2001, pp. 75-89.
  36. 31. R. Verma and M. E. Pullman, “An analysis of the supplier selection process,” International Journal of Management Science, vol. 26, no. 6, 1998, pp. 739-750.
  37. 34. V. Gabrel, C. Murat and A. Thiele, “Recent advances in robust optimization: An overview,” European Journal of Operational Research, vol. 235, no.1, 2014, pp.471-483.
  38. 35. V. Wadhwa and A. Ravi Ravindran, “Vendor selection in outsourcing,” Computers & Operations Research, vol. 34, no. 12, 2007, pp. 3725-3737.
  39. 39. Z. Li and M. G. Ierapetritou, ”Robust Optimization for Process Scheduling Under Uncertainty,” Industrial and Engineering Chemistry Research, vol. 47, no. 12, 2008, pp. 4148-4157.