Title

砂箱實驗模擬基樁位於乾砂與飽和砂動力行為分析與探討

Translated Titles

Study on Dynamic Behavior of Pile in Dry sand and Saturated sand through Sandbox Test

Authors

董學宜

Key Words

OpenSEES ; 基樁-土壤互制 ; 模型樁 ; 動力分析 ; 砂箱 ; OpenSEES ; pile-soil interaction ; model pile ; dynamic analysis ; sandbox.

PublicationName

臺北科技大學土木與防災研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

宋裕祺

Content Language

繁體中文

Chinese Abstract

由於臺灣西部平原地質多為砂性土壤且部分地區水位分佈較高,且位處環太平洋地震帶,地震發生機率頻繁,橋梁隨時有可能遭受地震的威脅。由近年所發生的地震可觀察到,其多具有延時長、振幅大的特性,而此類型的地震可能導致砂性土壤產生液化的現象,致使橋梁樁身失去摩擦力,基樁所承受側向力遽增導致破壞。不論橋梁結構本身是因地震作用的損毀或是受到土壤液化行為的影響,都會對橋梁的安全性產生極大的傷害。有鑑於此,本研究擬針對樁基礎位於飽和砂土中且承受地震力之作用下影響與評估。 先前由蔡雨呈使用MIDAS GTS建立三維分析模型模擬橋梁與乾砂土壤間的互制行為,且配合國家地震中心振動台試驗,模擬橋梁受沖刷,導致樁基礎裸露時耐震行為,並進行實驗與數值分析比對。 本文進一步探討橋梁位於飽和砂土壤之互制關係,使用有限元素軟體OpenSEES建立三維分析模型,模擬樁基礎位於乾砂土壤與飽和砂土壤,並配合於國家地震工程研究中心縮尺橋梁單樁試體振動台試驗,模擬橋梁位於乾砂土壤與飽和砂土壤中的耐震行為,再將實驗數據與模擬分析結果進行比對。

English Abstract

This thesis intends to study the interaction of dynamic response between bridge pile and soil surrounding. The experimental dynamic responses of the bridge pier with pile located at dry sand and saturated sand, respectively, were obtained through shaking table test of an experiment including mass block, bridge column and pile embed in sandbox conducted by National Center of Earthquake Engineering (NCREE). The experimental results were served as the database for investigation. In additional to a deeper discussions on the differences between experimental results of dry sand and saturated sand, this thesis used software of OpenSEES to establish a three dimensional finite element model for nonlinear time history analysis. Through comparing the analytical results and experimental results, the accuracy of the model established was able to be assured so that the soil structure interaction between pile and soil (dry sand / saturated sand) can be better understood and served as prediction for the similar cases in practical engineering application.

Topic Category 工程學院 > 土木與防災研究所
工程學 > 土木與建築工程
工程學 > 市政與環境工程
Reference
  1. 【1】 Biot, M. A., “General theory of three - dimensional consolidation,” Journal of Applied Physics, Vol.12, No.2, 1941, pp.155-164.
    連結:
  2. 【3】 Cook, R. D., Malkus, D. S., Plesha, M. E., “Concepts and applications of finite element analysis,” Third edtion, John Wiley & Sons., 1989.
    連結:
  3. 【4】 Funahara, H., “Components of dynamic subgrade reaction on pile in saturated sand,” 2008.
    連結:
  4. 【8】 Jeremić, B., Jie, G., Preisig, M. and Tafazzoli, N., “Time domain simulation of soil–foundation–structure interaction in non - uniform soils,” Earthquake Engineering & Structural Dynamics, Vol.38, No.5, 2009, pp.699-718.
    連結:
  5. 【10】 Kramer, S. L., “Geotechnical earthquake engineering,” Prentice-Hall Civil Engineering and Engineering Mechanics Series, 1996.
    連結:
  6. 【13】 McGann, C. R., Arduino, P., and Mackenzie-Helnwein, P., “Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, No.6, 2010, pp.557-567.
    連結:
  7. 【14】 Mroz, Z., “On the description of anisotropic workhardening,” Journal of the Mechanics and Physics of Solids, Vol.15, No.3, 1967, pp.163-175.
    連結:
  8. 【16】 Prevost, J. H., “A simple plasticity theory for frictional cohesionless soils,” International Journal of Soil Dynamics and Earthquake Engineering, Vol.4, No.1, 1985, pp.9-17.
    連結:
  9. 【17】 Reddy, J. N., “An introduction to the finite element method,” McGraw-Hill, 1993.
    連結:
  10. 【19】 Tokimatsu, K. and Suzuki, H., “Pore water pressure response around pile and its effects on p-y behavior during soil liquefaction,” Soils and Foundations, Vol.44, No.6, 2004, pp.101-110.
    連結:
  11. 【20】 Wang, S. C., Ueng, T. S., Liu, K. Y., Chang, C. H. and Chen, C. H., “Shaking table tests for scouring effect on piled bridge foundations,” 4th Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes Engineering and Heavy Rainfalls, Sendai,Japen, October, 2010, 25-28.
    連結:
  12. 【22】 Yang, Z., Elgamal, A. and Parra, E., “Computational model for cyclic mobility and associated shear deformation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.12, 2003, pp.1119-1127.
    連結:
  13. 【24】 Yang, Z. and Jeremić, B., “Study of soil layering effects on lateral loading behavior of piles,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.6, 2005, pp.762-770.
    連結:
  14. 【25】 Yao, S., Kobayashi, K., Yoshida, N. and Matsuo, H., “Interactive behavior of soil–pile-superstructure system in transient state to liquefaction by means of large shake table tests,” Soil Dynamics and Earthquake Engineering, Vol.24, No.5, 2004, pp.397-409.
    連結:
  15. 【27】 Zienkiewicz, O. C., Taylor, R. L., “The finite element method - volume 1:Basic formulation and linear problems,” Fourth edition, UK: McGraw-Hill, 1991.
    連結:
  16. 【29】 宋裕祺、林正偉、王傅輝,有限元素法在鋼橋局部應力分析之應用與探討,中華技術,第71期,2006,第62-73頁。
    連結:
  17. 【30】 廖南華,土壤經驗參數於數值分析之應用,國立成功大學土木工程研究所碩士論文,台南,2003。
    連結:
  18. 【31】 張國鎮、王修駿、劉光晏、翁作新、陳家漢、陳正興等人,「樁基礎沖刷橋梁模型之振動台試驗研究(II)」,國家地震工程研究中心報告,2012,報告編號:NCREE-12-024。
    連結:
  19. 【33】 曾永成,飽和砂土中樁基受反覆側向荷重之行為,臺灣大學土木工程學研究所碩士論文,台北,2008。
    連結:
  20. 【34】 李政達,鋼筋混凝土非線性結構動力分析之數值雜訊探討,國立臺北科技大學土木與防災研究所碩士論文),台北,2011。
    連結:
  21. 【42】 蔡雨呈,砂箱實驗模擬樁基礎裸露動力行為分析與探討,國立臺北科技大學土木與防災研究所碩士論文,台北,2011。
    連結:
  22. 【43】 賴姿妤,樁基礎沖刷橋梁模型之振動台試驗研究,臺灣大學土木工程學研究所碩士論文,台北,2011。
    連結:
  23. 【45】 鄒承府,振動台大型剪力盒麥寮砂試體準備之評估,臺灣大學土木工程學研究所碩士論文,台北,2006。
    連結:
  24. 【46】 陳俊吉,近斷層強震反應之研究,國立成功大學土木工程研究所碩士論文,台南,2005。
    連結:
  25. 【49】 陳益成,大型振動台飽和麥寮砂受振行為之研究,臺灣大學土木工程學研究所碩士論文,台北,2007。
    連結:
  26. 【2】 Chopra, A. K., “Dynamics of structures,” Prentice Hall Englewood Cliffs, NJ., 1995.
  27. 【5】 Funahara, H., Fujii, S. and Tamura, S., “Numerical simulation of pile failure in liquefied soil observed in large-scale shaking table test,” Proc., of 12th World Conf. on Earthq. Engrg., Reference, Vol.927, 2000, pp.1.
  28. 【6】 Higuchi, K., Yasuda, K., Tanaka, T., Arai, D. and Kobayashi, T., “SHAKING TABLE TESTS ON THE MECHANISM OF LIQUEFACTION-INDUCED GROUND FLOW BEHIND QUAY WALLS,” Soil Dynamics and Earthquake Engineering 25, Vol.25, 2004, pp.753-762.
  29. 【7】 Jeremic, B., “A brief overview of neesgrid simulation platform opensees: Application to the soil–foundation–structure interaction problems,” Proceedings of the Third United States–Japan Natural Resources Workshop on Soil-Structure Interaction, Vallombrosa Center, Menlo Park, California, USA, 2004.
  30. 【9】 Kincho, H., “Computational modeling of nonlinear soil-structure interaction on parallel computers,” 2004.
  31. 【11】 Maula, B. H., XianZhang, L., Liang, T. and Pengju, X., “3D FEM numerical simulation of seismic pile-supported bridge structure reaction in liquefying ground,” Research Journal of Applied Sciences, 2011.
  32. 【12】 Mazzoni, S., McKenna, F., Scott, M. H. and Fenves ,G. L., “OpenSees command language manual,” Pacific Earthquake Engineering Research (PEER) Center, 2005.
  33. 【15】 Parra-Colmenares, E. J., “Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems,” 1996.
  34. 【18】 Schnabel, P. B., Lysmer, J., Seed, H. B., “SHAKE: A computer program for earthquake response analysis of horizontally layered sites,” No. EERC 72-12)Earthquake Engineering Research Center, University of California at Berkeley, 1972.
  35. 【21】 Wotherspoon, L., “Three dimensional pile finite element modelling using OpenSees,” Dept. of Civil and Environmental Engineering, 2006.
  36. 【23】 Yang, Z. and Elgamal, A. W. M., “Numerical modeling of earthquake site response including dilation and liquefaction,” 2000.
  37. 【26】 Zadeh, M. S., Saiidi, M. S., “Pre-test analytical studies of NEESR-SG 4-span bridge model using opensees,” No.CCEER-07-3, Reno, Nevada:University of Nevada, Reno, February, 2007
  38. 【28】 Zienkiewicz, O. C., Taylor, R. L., “The finite element method - volume 2:Solid and fluid mechanics, dynamics and non-linearity,” Fourth edition, UK: McGraw-Hill, 1991
  39. 【32】 張國鎮、蔡益超、宋裕祺等人,「公路橋梁耐震能力評估及補強準則之研究」,2009,國家地震工程研究中心報告,報告編號:NCREE-09-028。
  40. 【35】 林士誠,「標準貫入試驗N值應用之彙整(一)」,台灣省土木技師公會,1996,技師報第654期。
  41. 【36】 歐陽治華、王勝開、全中學、Ouyang, Z. H., Wang, S. K., Quan, Z. X.,礦山井下泥石流形成機理與固液耦合數值模擬研究,Metal Mine,第10卷,第5期,2008。
  42. 【37】 翁作新、王明輝、陳銘鴻、何文欽,「大型振動台剪力盒土壤液化試驗 (I)-大型二維剪力盒之研發」,國家地震工程研究中心報告,2001,報告編號:NCREE-01-011。
  43. 【38】 翁作新,陳家漢,振動台試驗探討土壤液化與樁土互制作用,地工技術,第121期,2009,第55-62頁。
  44. 【39】 翁作新、陳家漢、彭立先、李偉誠,「大型振動台剪力盒土壤液化試驗 (II)—大型砂試體之準備與振動台初期試驗」,國家地震工程研究中心報告,2003,報告編號:NCREE-03-42。
  45. 【40】 翁作新、陳家漢、程漢瑋、吳繼偉,「大型振動台剪力盒土壤液化試驗 (III)—飽和越南砂試體受振沉陷之探討」,國家地震工程研究中心報告,2006,報告編號:NCREE-06-019。
  46. 【41】 翁作新、陳家漢、鄒承府、陳益成,「大型振動台剪力盒土壤液化試驗 (IV)—飽和麥寮砂試體受振行為之探討」,國家地震工程研究中心報告,2008,報告編號:NCREE-08-011。
  47. 【44】 邱俊翔、戴偉倫、陳家漢,「飽和砂土中模型樁之側向遲滯行為」,國家地震工程研究中心報告,2011,報告編號:NCREE-11-021。
  48. 【47】 陳家漢、翁作新,可能液化地盤中模型樁振動台試驗,地工技術,第125期,2010,第35-44頁。
  49. 【48】 陳永偉、劉顯群、王立忠、舒恒、Chen, Y. W., Liu, X. Q.等人,「強震作用下松散海床地基的動力響應」,Rock and Soil Mechanics,第32卷,第7期,2011。
Times Cited
  1. 林煒宸(2014)。樁筏基礎受力變形之有限元素分析。淡江大學土木工程學系碩士班學位論文。2014。1-174。 
  2. 陳竑瑋(2013)。地下隧道受地震作用之結構與土壤互制行為研析。臺北科技大學土木與防災研究所學位論文。2013。1-151。