Title

承受斜向壓縮負載薄壁管機械行為之研究

Translated Titles

Study on Mechanical Behavior of Thin-walled Tubes under Oblique Compressive Loading

DOI

10.6841/NTUT.2014.00897

Authors

王界平

Key Words

機械行為 ; 薄壁管 ; 比吸能 ; 有限元素分析 ; 田口方法 ; Mechanical behavior ; Thin-walled tubes ; Specific energy absorption ; Finite Element Method

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

陳政順

Content Language

繁體中文

Chinese Abstract

本文為研究一種薄壁管件的輕型結構,在承受不同斜向負載下的機械行為,使用有限元素方法模擬方形薄壁管件承受斜向負載的塑性變形,並計算與比較薄壁管承受不同角度負載的比吸能,其結果可以發現能量吸收隨著負載角度的增加而減少。 同時,利用田口方法嘗試尋找方形薄壁管件承受斜向負載的最佳設計參數,分析時以薄壁管件之厚度、寬度、圓角半徑、管件傾斜角為控制因子,並以管件之比吸能為其實驗目標。初步結果顯示影響比吸能的最大因子為管件寬度,其次為圓角半徑與管件傾斜角度,且方形管件的斷面寬度越大可承受較大的負載角度。此外,結果亦顯示,優化設計參數與原始設計比較,比吸能增加75.49%,且可以承受較大的負載角度,13度。希望這項研究可以提供直立薄壁方管承受斜向壓縮負載下能量吸收之設計基礎。

English Abstract

The purpose of this paper is to study the mechanical behavior response of a light weight structure like thin-walled tubes subjected to compressive loading. The plastic deformation of the upright square thin-walled tubes under oblique compressive loading are conducted based on 3D finite element model. Then the specific energy absorption of structure under different loading angle are computed and compared based on simulation results. It is found that the energy absorption decreases as the angle of apply load increases. The optimal design parameters of thin-walled tubes subjected to compressive loading are also investigated using the Taguchi method. The main control factors selected are thickness, width, corner radius and the tape angle of the tube. The quality objective considered is the specific energy absorption. In this case study, the results show that the biggest factor affecting the specific energy absorption is width of tube, followed by corner radius and the tape angle of the tube. And tubes can withstand greater load angle with increasing of section width. In addition, the results based on optimal design parameters also show that the specific energy absorption increased 75.49 %, and can withstand greater load angle up to 13 degrees as compared to the original design. It is also hope that the study can provide information for the design of straight thin-walled rectangular tubes as energy absorbers under oblique compressive loading.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [1]J. Marsolek and H. G. Reimerdes, " Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns", International Journal of Impact Engineering 30, 2004, pp1209-1223.
    連結:
  2. [4]Guillow,S.R. , Lu, G. and Grzebieta, R.H. , "Quasi-static axial compression of thin-walled circular aluminium tubes ", International Journal of Mechanical Sciences 43, 2001,pp2103-2123.
    連結:
  3. [6]Ali Alavi Nia, Jamal Haddad Hamedani, "Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries ", Thin-Walled Structures,48 ,2010,pp 946-954.
    連結:
  4. [7]姜文忠,承受軸向壓縮負載薄壁管之模擬分析,碩士論文,國立臺北科技大學製造科技研究所,臺北,2013。
    連結:
  5. [9]J.M. Alexander, "An approximate analysis if the collapse of thin cylindrical shells under axial loading ", Imperial College of Science and Technology, 1959, pp10-15.
    連結:
  6. [11]A. Alavi Nia, Kh. FallahNejad, H. Badnava, H.R.Farhoudi, "Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading ", Thin-Walled Structures59, 2012, pp87-96.
    連結:
  7. [12]Qingwu Cheng, William Altenhof, Li Li, "Experimental investigations on the crush behavior of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities ", Thin-Walled Structure44, 2006, pp441-454.
    連結:
  8. [13]S. Ramakrishna and H. Hamada, "Energy absorption characteristics of crush worthy structural composite materials", Key Engineering Materials141-143, 1998, pp586-622
    連結:
  9. [15]Norman E. Dowling, Mechanical Behavior of Materials 3th, Pearson/Prentice Hall,2006, pp615-619.
    連結:
  10. [17]黃美雲,圓柱形薄壁構件承受衝擊荷重下力學行為之研究,博士論文,國立成功大學土木工程研究所,臺南,2011。
    連結:
  11. [18]Fengxiang Xu, Guangyong Sun, Guangyao Li, Qing Li, Experimental study on crashworthiness of tailor-welded blank(TWB) thin-walled high-strength steel (HSS) tubular structures, Thin-Walled Structures 74, 2014, pp12-27.
    連結:
  12. [20]Daryl L. Logan, A First Course in the Finite Element Method 5th , Cengage Learning, 2011, pp770-780.
    連結:
  13. [2]汽車日報,www.autonet.com.tw
  14. [3]孫治華,「不同截面形式的薄壁管件吸能效果的仿真分析」,中國科技論文在線,2009。
  15. [5]張立玲、林逸、高峰,「不同材料薄壁圓管準靜態軸壓變形特性」, 塑性工程學報,第17卷,第4期,2010,第62-65頁。
  16. [8]張永康、張紅兵,「不同構型吸能元件的軸向抗撞性能分析」,機械設計與製造,第11期,2011,第213-216頁。
  17. [10]亓昌、董方亮、楊妹、王棟,「錐形多胞薄壁管斜向衝擊吸能特性仿真研究」,振動與衝擊,第31卷,第24期,2012,第102-107頁。
  18. [14]R.C. Hibbeler, Mechanics of Materials 7th, Pearson Education South Asia Pte Ltd, 2008, pp88
  19. [16]陳吉清、周鑫美、饒建強、區權湛,「汽車前縱梁薄壁結構碰撞吸能特性及其優化的研究」,汽車工程,第32卷,第6期,2010,第486-495頁。
  20. [19]ANSYS 13.0 help - Release 13.0 Documentation for ANSYS.
  21. [21]李輝煌,田口方法:品質設計的原理與實務,新北:高立圖書,2011。
  22. [22]http://www.matweb.com/