透過您的圖書館登入
IP:13.58.112.1
  • 學位論文

結合電紡與冷凍乾燥技術製備雙層多孔性皮膚支架

Preparation of a Bi-layer Porous Skin Scaffold Fabricated via Electrospinning and Freeze-drying Techniques

指導教授 : 林忻怡
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗以幾丁聚醣製作雙層複合式人造皮膚支架,作為全層皮膚修復使用。利用冷凍乾燥法製備多孔性真皮層,再以電紡方式將緻密的奈米絲狀結構覆蓋其上,形成表皮層。在此製備過程中,兩層中間會形成一層薄膜,似皮膚中的基底膜,分隔兩層中不同的細胞,使得整體結構較傳統單層支架更接近真實皮膚。 複合支架以戊二醛交聯,穩定其物理結構。在降解測試中,其孔狀及纖維結構可維持七天以上,足夠時間使皮膚生長修復;膨潤率測試中,膨潤後體積變化甚小,不會隨時間變化擠壓周圍健康皮膚;由各支架拉伸測試得知,此雙層結構較傳統單層結構具較高的機械強度,更接近真實皮膚。在電子顯微鏡下觀察發現細胞在此支架中會隨時間快速增長,並產生胞外基質(膠原蛋白)。 實驗結果顯示,雙層複合式皮膚支架結構與自然皮膚相似,有更佳的結構穩定性及機械強度;並有極高的細胞相容性,可誘導細胞生長進入支架內部。

並列摘要


In the present study, we used chitosan to make a bi-layered composite artificial skin construct for full-thickness skin repair. The epidermal layer was constructed from a nano-fiber matrix, and the dermal layer was similar to porous sponge structure. In this process, the dermal layer forms a built-in basal membrane. This built-in basal membrane can separate the different cells into two layers that better simulate natural skin structure. This bi-layered composite artificial skin scaffold has to cross-link with glutaraldehyde to stabilize the physical structure. In degradation test, this porous, nano-fiber structure can be maintained for more than 7 days, which is enough time to allow for skin growth and repair. In swelling test, the variation of swelling volume is within a narrow range and will not change with time to cause extrusion to the surrounding healthy skin. In tensile strength test, the mechanical strength of bi-layered structure is higher than the traditional single-layer and approach the natural skin. The cells will grow rapidly with time, and examination via electron microscope shows that these cells produce extracellular matrix (collagen). The study results indicate that a bi-layered composite artificial skin structure is more similar than the traditional artificial structure to natural skin structure, and with better structural stability and mechanical strength, and with high cell compatibility which can induce cell growth into the scaffolds.

參考文獻


Ahn, Y. C., S. K. Park, et al. (2006). "Development of high efficiency nanofilters made of nanofibers." Current Applied Physics 6: 1030-1035.
Balasubramani, M., T. Kumar, et al. (2001). "Skin substitutes: a review." Burns 27: 534–544.
Beele, H. (2002). "Artificial skin: past, present and future." International Journal of Artificial Organs 25: 163-173.
Berger, J., M. Reist, et al. (2004). "Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications." European Journal of Pharmaceutics and Biopharmaceutics 57: 19-34.
Bhardwaj, N. and S. C. Kundu (2010). "Electrospinning: A fascinating fiber fabrication technique." Biotechnology Advances 28: 325-347.

延伸閱讀