Translated Titles

Crystallinity and thermal degradation behavior of poly-L-lactide for dental/orthopedic use



Key Words

聚乳酸性 ; 生物可吸收 ; 熱熔熱壓成型 ; 熱性質 ; 結晶性 ; Poly-L-lactide ; biomaterial ; hot compression molding ; thermal properties ; crystallinity



Volume or Term/Year and Month of Publication


Academic Degree Category



李勝揚;曾 厚;林哲堂

Content Language


Chinese Abstract

本研究之目的在於探討具生物分解性的聚左乳酸(poly-L-lactide,簡稱PLLA)加工過程中,溫度及環境對分子量改變和結晶行為的影響,以期在製備新型生物可吸收性材料時,能控制其機械強度與降解速率,以應用於牙科或骨科硬組織之修復。實驗採熱熔熱壓成型法,製備聚乳酸試塊,探討:(1)PLLA複合材之基本性質,以MTS測試其彎曲強度,用DSC來檢測熔點,再以測定毛細管黏度分析分子量的變化;(2)量測PLLA在溶解、再沈、乾燥、熔融和熱壓等加工過程中,其分子量的降解程度。另外,利用濕式成膜的方式,製備聚乳酸薄膜對聚乳酸的結晶性進行探討。實驗發現220 ?C為所測試聚乳酸熱熔加工的適當溫度;在不同的加溫氣氛中,聚乳酸到達融熔所需的時間有所不同,空氣下熱熔較有效率,但過程之熱性質變化較為激烈,而真空下加溫所得聚乳酸彎曲強度明顯大於在空氣中加溫。不同降溫系統亦造成不同聚乳酸彎曲強度,在氮氣下降溫的彎曲強度較空氣中的值高。亦即,於真空中熱熔並在氮氣下冷卻的聚乳酸所得之彎曲強度(115.9 + 1.3 MPa)最高,而於空氣中加溫並冷卻的聚乳酸之彎曲強度(76.9 + 1.8 MPa)最低。結晶熱焓、熔點波峰和繞射角隨著時間而變化,其影響因素包含了再結晶效應與熱裂解效應。所得聚乳酸的成型物經由適當的熱處理,可以改變聚乳酸的結晶度和晶型,藉此進一步的掌握降解速率。但對於PLLA,以射出成型之試樣經過熱處理後,彎曲強度會下降(由113.5下降至87.6 MPa),物性較脆;而藉由PDLLA的改質,經過熱處理後,彎曲強度增加(由116.8增加至146.5 MPa)和伸長率都會增加,且有適當的結晶度。本實驗對於寡乳酸聚合物的基本性質和加工條件已有初步瞭解,以射出成型所製備之聚乳酸試樣經由熱處理後的彎曲強度亦高達146 MPa,聚乳酸的機械強度和降解速率與其分子量、結晶度息息相關,因此對於升溫環境的保護,以及適當時間的再結晶處理,都是聚乳酸加工條件最佳化的重要因素。

English Abstract

Poly-L-Lactide (PLLA) was used to prepare objects as useful dental/orthopedic biomaterial in this investigation. Samples were prepared by compression molding in the study. PLLA was heated at 220 ?C in air atmosphere and nitrogen atmosphere, respectively, to achieve a molten phase for molding. The PLLA was then molded immediately by with hot press, followed by cooling in nitrogen atmosphere or in air atmosphere. PLLA film used for the annealing experiment was obtained through the solvent-casting method. Annealing of PLLA films was performed under different annealing time. The basic characterization of the prepared PLLA samples were performed by differential scanning calorimeter and X-ray diffraction pattern for thermal properties and crystallinity, and by material testing system for mechanical strength. The bending strength of samples prepared under nitrogen atmosphere (115.9 + 1.3 MPa) (or under vacuum) was better than that of samples prepared under air atmosphere (76.9 + 1.8 MPa). The thermal property of the sample prepared under nitrogen atmosphere (or under vacuum) was more stable than that of samples prepared under air atmosphere. The crystallinity and melting temperatures of PLLA film increased with annealing time. The enthalpy of crystallization, melting peak and X-ray diffraction angle were change depended on the annealing time, the effect factors included recrystallization and thermal degradation effect. The bending strength of PLLA/PDLLA specimen that prepared by injection molding and via thermal treatment was reached 146 MPa . These results suggest that better PLLA objects can be obtained under optimal conditions, as described above.

Topic Category 醫藥衛生 > 牙科與口腔科
口腔醫學院 > 牙醫學系碩博士班
  1. 6. Uhthoff H K, Dubuc F L (1971): Bone structure changes in the dog under rigid internal fixation Clin Orthop 81: 165-170
  2. 7. Slatis P, Karaharju E, Holmstrom T, Ahonen J, Paavolainen P (1978): Structure changes in intact bone after application of rigid plates with and without compression J Bone Jt Surg 60-A: 516-522
  3. 8. Kawahara H, Hirabayashi H, Shikita T (1980): Single crystal alumina for dental implants and bone screws J Biomed Master Res 14: 597-605
  4. 10. Leenslag J W (1982): Poly(L-lactide) and its biomedical applications Thesis, University of Groningen, The Netherlands
  5. 12. Vert M, Chabot F, Leray J, Christel P (1981): Stereoregular bioresorbable polyester for orthopaedic surgery Macromol Chem Phys Suppl 5: 30-41
  6. 15. Hollinger J O, Battistone GC(1986): Biodegradable bone repair materials, Synthetic polymers and ceramics Clinical Orthopaedics & Related Research, 207:290-305
  7. 16. Kulkarni R K, Pani K C, Neuman C, Leonard F (1966): Polylactic acid for surgical implants. Arch Surg 93:839-843
  8. 17. Kulkarni R K, Moore E G, Hegyeli A F, Leonard F (1971): Biodegradable poly(lactic acid) polymers J Biomed Mater Res 5:169
  9. 19. Cutright D E, Hunsuck E E (1972): The repair of fractures of the orbital floor using biodegradable polylactic acid Oral Surg 33:284
  10. 21. Olson R A, Robert D L, Osbon D B (1982): A comparative study of polylactic acid, gelform, and surgigel in healing extraction sites Oral Surg 53:441
  11. 23. Brekke J, Olson R, Scully J, Obson D (1983): Influence of polylactic acid mesh on the incidence of localized osteitis Oral Surg 56:240
  12. 25. Bos R R M, Boering G, Rozema F R, Leenslag J W (1987): Resorbable poly(L-lactide) plates and screws for fixationof zygomatic fractures J Oral Maxillofac Surg 45:751-3
  13. 27. Brady J M, Cutright DE, Miller R A, Battistone G C (1973): Resorption rate, route elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat J Biomed Master Res 7:155
  14. 28. Cutright D E, Beasley J D III, Larson W J, Posey W R (1974): Degradation rates of polylactic and polyglycolic acids J Oral Surg 37:142-152
  15. 29. Hollinger J O, Battistone GC(1986): Biodegradable bone repair materials, Synthetic polymers and ceramics Clinical Orthopaedics & Related Research, 207:290-305
  16. 30. Leenslag J W, Penning A J, Bos R R M, Rozema F R, Boering G (1987): Resorbable materials of poly(L-lactide) VII. In vitro degradation Biomaterials 8:311-314
  17. 31. Nakamura T, Hitomi S, Watanabe S, Shimizu Y, Jameshidi K, Hyon S H, Ikada Y (1989): Bioabsorption of polylactides with different molecular properties J Biomed Master Res 23:1115-1130
  18. 32. Matsusue Y, Yamamuro T (1992): In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(l-lactide) rods J Biomed Master Res 26:1553-1567
  19. 33. Zhang R, Peter Ma P X.: Poly(α-hydroxyl acids)/ hydroxyapatite porous composites for bone-engineering. I. Preparation and morphology Biodegradable composite scaffolds J Biomed Master Res, 44(4): 446-55
  20. 34. Mainil-Varlet P, Rhan B, Gogolewski S: Long-term in vivo degradation and bone reaction to various polylactides Biomaterials 18 (1997) 257-266
  21. 36. Gabriele Perego, Gian Domenico Cella, and Catia Bastioli: Effect of Molrcular Weight and Crystallinity on Poly(lactic acid) Mechanical Properties Journal of Applied Polymer Science. Vol. 59, 37-48 (1996)
  22. 37. Ikada Y, Tsuji H: Properties and morphologies of poly(L-lactide):4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-buffered solution Polymer Degradation and Stability 67(2000)179-189
  23. 38. Tsuji H, Ikada Y: Properties and morphologies of poly(L-lactide):1. Annealing condition effects on properties and morphologies of poly(L-lactide) Polymer Vol.36 No. 14, pp. 2709-2716, 1995
  24. 39. Gogolewski S, Mainil-Varlet P (1996): The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. I. Poly(L-lactide) Biomaterials 17:523-528
  25. 40. Tsuji H, Ikada Y (1996): Blends of isotactic and atactic poly(lactide)s:2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt Polymer Vol.37 No.4,
  26. 1. Muller E, Allgower M, Schneider R, Willlenegger H (1979): Manual of Internal Fixation, Springer-Verlag, Berlin
  27. 2. Schaztker J, Tile M (1987): The Rationale of Operative Fracture Care, Springer-Verlag, Berlin
  28. 3. Cohen J, Wulff J (1972): Clinical failure caused by corrosion of a Vitallium plate J Bone Jt Surg 54-A: 617-628
  29. 4. Cochran G V B (1969): effect of internal fixation plates on mechanical deformation of bone Surg Forum 20: 469-471
  30. 5. Tonino A J, Davidson C L, Klopper P J, Linclau L A (1976): Protection from stress in bone and plastic plates in dog J Bone Jt Surg 58-B: 107-113
  31. 9. Higgins N A (1954): Condensation polymers of hydroxyacetic acid U.S.Patent NO.2676945
  32. 11. Schneider A K (1955): Polymers of high melting lactide U.S.Patent No.2703316
  33. 13. Holten C (1971): Laactic acid Weinheim: Verlag Chemie 221-31
  34. 14. Lehninger A E (1982): Principles of biochemistry [Eds Anderson S and Fox J] New York Worth Publishers, New York, USA 435-48
  35. 18. Cutright D E, Hunsuck E E, Beasley J D III (1971): Fracture reduction using a biodegradable material, polylactic acid J Oral Surg , 29(6) 393:97
  36. 20. Getter L, Cutright D E, Bhaskar S N, Augsburg J K (1972): A biodegradable intraosseous appliance in the treatment of mandibular fractures J Oral Surg 30:344
  37. 22. Brekke J H, Bresner M, Reitman M J (1986): Polylactic acid surgival dressing material: Postoperation therapy for dental extraction wounds Can Dent Assoc J 52:599
  38. 24. Gerlach K L (1990): The treatment of zygomatic fracture with biodegradable poly(L-lactide) plates and screws. Clinical implant materials. IN: Heimke G, Soltesz U, Lee A C J, eds: Advances in biomaterials. Amsterdam Elsevier 573-8
  39. 26. Rozema F R, Bos R R M, Boering G et al (Sep 1991): Late tissue response to bone plates and screws of poly(L-lactide) used for fixation of zygomatic fractures. Report of 4 cases Abstract book of 9th European Conference on Biomaterials, Chester UK 154
  40. 35. Carla Marega, Antonio Marigo, Vito Di Noto, Roberto Zannetti: Structure and crystallization kinetics of poly(L-lactic acid) Makromol. Chem. 193, 1599-1606 (1992)
Times Cited
  1. 柯文昌(2003)。聚乳酸骨釘骨板與骨斷裂面癒合過程間之交互影響。臺北醫學大學牙醫學系碩博士班學位論文。2003。1-180。
  2. 何國寧(2004)。以光彈分析法研究貼附基質物理性質與細胞貼附之關係。臺北醫學大學牙醫學系碩博士班學位論文。2004。1-112。
  3. 林昱辰(2018)。感應加熱模內熱處理之聚乳酸射出成型骨板強度改善研究。虎尾科技大學機械與電腦輔助工程系碩士班學位論文。2018。1-76。