Title

聚乳酸骨釘骨板與骨斷裂面癒合過程間之交互影響

Translated Titles

Interaction Between Poly-L-Lactic Acid Bone Plate/Screw and Healing Process of Fracture Interface

Authors

柯文昌

Key Words

聚乳酸骨釘骨板 ; 聚乳酸 ; 生物可吸收性 ; 骨斷裂 ; 骨固定 ; poly-lactic acid fixation plate ; poly-lactic acid ; bioresorbable ; bone fracture ; bone fixation

PublicationName

臺北醫學大學牙醫學系碩博士班學位論文

Volume or Term/Year and Month of Publication

2003年

Academic Degree Category

碩士

Advisor

李勝揚;王敦正

Content Language

繁體中文

Chinese Abstract

生物可吸收性材之良好生物相容性以及可製程控制之降解特性使其近年來被廣泛研究,且已成功地發展出可吸收性縫線、人造膜、外科敷料、骨填補材等等臨床應用材。本實驗室長期致力於聚乳酸(Poly lactic acid-PLA)系材料的應用研究,不論在基礎性質或製程的探討上均獲致相當成果,且已逐步將其製成骨內復位固定器。本研究目的即希望藉由標準化的下顎骨斷裂模式,觀察以聚乳酸製作之骨釘骨板固定骨斷裂面復位後生物組織變化及材料降解性質變化,並比較以鈦金屬固定斷裂面與斷裂後不固定三者間骨斷面之癒合程度差別。選擇成年紐西蘭公兔,手術區域均為右下顎骨之骨體中段部份,製造一垂直於骨體長軸的標準化骨斷裂模式,分別以聚乳酸骨釘骨板及鈦金屬骨釘骨板作固定,另外以斷裂後不固定作為對照組。實驗動物依照0,1,4,8,12,16,26週共七個觀察時間點並以灌流犧牲,觀察其骨髓及斷面之組織反應,以及聚乳酸降解性質變化。物化性質測試方面,於取出骨板後予以烘乾一天作質量變化測試,以三點彎曲量測骨板之彎曲強度變化,以瞭解其降解強度變化與斷面癒合速度之關係。再以示差掃描熱卡計測量結晶變化,以及以膠質滲透層析儀測定分子量,觀察聚乳酸之體內降解變化曲線,藉以推測完全降解所需時間。結果發現,聚乳酸骨釘與鈦金屬骨釘植入骨髓內之組織反應相似,均呈現早期的發炎、中期的修復與晚期的骨重塑反應。植入初期鈦金屬骨釘骨板則呈現較佳的固定力,骨斷面癒合較快,且是以類骨質型態直接鈣化完成,在第八週即見不到外凸的骨痂型態,反之聚乳酸組的斷面修復則是先形成纖維軟骨,再鈣化為硬骨的軟骨內骨生成模式為主,骨化所需時間較長。但在第十二週修復期後,兩者的斷面癒合狀況接近,均能達到骨質癒合效果。同時發現聚乳酸骨釘頸部及骨板下緣有新生骨組織攀爬生長上去,顯示其較鈦金屬具有更佳骨親合性,能夠導引骨生長至原有骨組織以外處,具有骨導引性。二十六週觀察期間聚乳酸骨板的重量均無顯著變化,而彎曲強度及結晶度則均呈現先升至第八週後再下降的變化,而分子量變化則呈現緩步下降情形,二十六週時僅剩下三分之一。組織觀察與降解物化性之兩者變化關係可推論:結晶度越高,彎曲強度越強,而這種植入後逐漸上升的強度正好提供骨折癒合在前八週最需要的固持力。而八週後骨癒合已經初步完成,此時降解所造成的強度急速下降反而有助於骨成熟,並減少應力遮蔽效應造成之骨質流失及骨釘鬆動。加上它的生物可降解性,更能免除移除骨釘骨板的問題,應用於成長期的患者,不會影響骨骼生長,是一種相當具有潛能的生物材料。

English Abstract

The development of bioresorbable materials makes great progress for their property of biocompatibility and bioresorbability recently. And also the radio permeability, heat molding, and no growth inhibition, makes this type of biomaterial useful in clinical needs. There are several bio-resorbable materials get into clinical use, for example the bio-resorbable suture materials, bio-resorbable membrane, bioresorbable dressing materials, bio-resorbable bone defect filling materials etc. The poly lactic acid (PLA) material is one of most popular resorbable material used in the bio-environment. And it can also be used in the condition of reduction and fixation of bone fracture as a fixation plate. Our laboratory college pays attention to this material for a long period of time on the research of its basic characteristics and clinical applications. We developed a new process of processing to improve its strength and degrading performance. That makes this material a great progress in clinical fixation of bone fracture. The purpose of this study is to realize the interaction between the fracture area and the fixation devices, including traditional titanium plate/screw, PLA plate/screw, in comparison to fracture without any fixation device under a standardized in vivo experimental model of mandibular fracture and repair. The male adult New Zealand rabbit was used in this study and the operation site was located at the mid-portion of body of the right mandible. The goal of observation are divided into two parts;the first is the histological observation and comparison for PLLA / tissue and Titanium/tissue at the region of screw insertion and fracture gap performance. The second one is to evaluate the degree of biodegradation of this material at the time intervals we have planned, including the change of weight , three-point bending strength, crystallinity of material,and molecular weight changes。A standard, predictable, and reproducible model of bone fracture was designed to mimic the exact clinical fracture condition on the mid-portion of right side mandibular body of experimental animal. The combination method application of micro-saw and ultra-thin osteotome creates a standardized fracture gap vertical to body of mandible. The PLLA plates/screws and the Titanium miniplates/screws are used to fix the two parts of fracture gap. Fracture of the same area without fixation device was designed to be control group. The observation sacrifice intervals were week 0, week 1, week 4, week 8, week 12, week 16, week 26. The performance of tissue around screws and fracture gap and the physicochemical changes of PLLA fixation devices will be two main parts of observation. The result of the study indicated that PLLA screw/plate have better bone affinity than the Titanium screw/plate. But the latter one offer more primary stability in-between the two fragments of fractured bone. The healing process of these two types of material is similar to each other. That means the fixation ability of PLLA screw/plate is compactable to traditional Titanium miniplate/screw. The characteristics of lower Young’s modulus makes PLA a better application device on the fracture area under the risk of screw loosening for the reason of stress shielding. And the property of bioabsorbability means there is not necessary to remove the plate and screw when they are fixed in child or on-growing adolescence. So there is a great potential of PLA material on tissue regeneration and tissue engineering.

Topic Category 醫藥衛生 > 牙科與口腔科
口腔醫學院 > 牙醫學系碩博士班
Reference
  1. 4. 闕如玉,生物可降解性牙用/骨用聚乳酸高分子摻何物的製備與鑑定
    連結:
  2. 5. 陳欽德, 聚左乳酸摻何及其電漿表面處理之物化性探討
    連結:
  3. 6. 江怡雯,生物分解性多孔質聚乳酸/氫氧磷灰石複合材的製備及性質之探討
    連結:
  4. 7. 白裕仁,聚乳酸在活體內的組織反應與物理性質之變化
    連結:
  5. 8. 黃玉琪,牙用/骨用聚乳酸的結晶與熱裂解行為之探討
    連結:
  6. 9. 黃慧平, 聚乳酸薄膜及複合材之機械性質研究
    連結:
  7. 10. 陳長志,聚乳酸系骨釘骨板之短期活體內組織反應與降解變化 (二) 英文部分
    連結:
  8. 1. Kalfas, I. H. Principles of bone healing. Neurosurgery focus 10 (2001).
    連結:
  9. 3. Partricia S. Landry, A. A. M., Kalia K. Sadasivan, James A. Albright. Bone Injury Response. Clinical Orthopedics and Related Research 332, 260-273 (1996).
    連結:
  10. 4. Pietrzak, W. S., Caminear, D. S. & Perns, S. V. Mechanical characteristics of an absorbable copolymer internal fixation pin. J Foot Ankle Surg 41, 379-88 (2002).
    連結:
  11. 6. Thordarson, D. B., Samuelson, M., Shepherd, L. E., Merkle, P. F. & Lee, J. Bioabsorbable versus stainless steel screw fixation of the syndesmosis in pronation-lateral rotation ankle fractures: a prospective randomized trial. Foot Ankle Int 22, 335-8 (2001).
    連結:
  12. 7. Quereshy, F. A., Goldstein, J. A., Goldberg, J. S. & Beg, Z. The efficacy of bioresorbable fixation in the repair of mandibular fractures: an animal study. J Oral Maxillofac Surg 58, 1263-9 (2000).
    連結:
  13. 8. Ramakrishna, S. Biomedical applicationsw of polimer-composite materials. Composites science and technoligy 61, 189-224 (2001).
    連結:
  14. 9. Takizawa, T., Akizuki, S., Horiuchi, H. & Yasukawa, Y. Foreign body gonitis caused by a broken poly-L-lactic acid screw. Arthroscopy 14, 329-30 (1998).
    連結:
  15. 10. Tams, J. et al. High-impact poly(L/D-lactide) for fracture fixation: in vitro degradation and animal pilot study. Biomaterials 16, 1409-15 (1995).
    連結:
  16. 11. van der Elst, M., Dijkema, A. R., Klein, C. P., Patka, P. & Haarman, H. J. Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation: an animal study. Biomaterials 16, 103-6 (1995).
    連結:
  17. 12. Schaffler, M. B. & Burr, D. B. Stiffness of compact bone: effects of porosity and density. J Biomech 21, 13-6 (1988).
    連結:
  18. 13. San Roman, J. & Guillen Garcia, P. Partially biodegradable polyacrylic-polyester composites for internal bone fracture fixation. Biomaterials 12, 236-41 (1991).
    連結:
  19. 14. Slivka, M. A. & Chu, C. C. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy. J Biomed Mater Res 37, 353-62 (1997).
    連結:
  20. 15. Tieline, L. et al. The effect of transforming growth factor-beta1, released from a bioabsorbable self-reinforced polylactide pin, on a bone defect. Biomaterials 23, 3817-23 (2002).
    連結:
  21. 16. Vasenius, J., Majola, A., Miettinen, E. L., Tormala, P. & Rokkanen, P. Do intramedullary rods of self-reinforced poly-L-lactide or poly-DL/L-lactide cause lactic acid acidosis in rabbits? Clin Mater 10, 213-8 (1992).
    連結:
  22. 17. Lin, F. H., Chen, T. M., Lin, C. P. & Lee, C. J. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs 23, 186-94 (1999).
    連結:
  23. 18. McVicar, I., Hatton, P. V. & Brook, I. M. Self-reinforced polyglycolic acid membrane: a bioresorbable material for orbital floor repair. Initial clinical report. Br J Oral Maxillofac Surg 33, 220-3 (1995).
    連結:
  24. 19. Gogolewski, S. Bioresorbable polymers in trauma and bone surgery. Injury 31 Suppl 4, 28-32 (2000).
    連結:
  25. 20. Shikinami Y, O. M. Bioresorbable devices made of forged composites of hydroxyapatite particle and poly-L-lactide. Biomaterials 22, 3197-3211 (1999).
    連結:
  26. 21. furukawa T., M. Y., Yasunaga T., Nakagawa Y., Okada Y., Shikinami Y., Okuno M., Nakamura T.,. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide)composite rods for internal fixation of bone fractures. J. Biomed Mater Res 50, 410-419 (2000).
    連結:
  27. 22. Bostman, O. M., Hirvensalo E., Makinen J., Rokkanen P.,. Freign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg 72, 592 (1990).
    連結:
  28. 24. Bostman OM. Current concepts reviews: Absorbable implants for the fixation of fracture. J Bone Joint Surg 73A, 148-153 (1991).
    連結:
  29. 25. Elst M van der, D. A., Klein Cpat, Patka P, Haarman. Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation : An animal study. Biomaterials, 103-106 (1995).
    連結:
  30. 28. Roach, H. I. Bone Anatomy and Cell Biology. European Calcified Society (2003).
    連結:
  31. 29. Rohner, D., Tay, A., Meng, C. S., Hutmacher, D. W. & Hammer, B. The sphenozygomatic suture as a key site for osteosynthesis of the orbitozygomatic complex in panfacial fractures: a biomechanical study in human cadavers based on clinical practice. Plast Reconstr Surg 110, 1463-71; discussion 1472-5 (2002).
    連結:
  32. 30. Woo, S. L., Simon, B. R., Akeson, W. H., Gomez, M. A. & Seguchi, Y. A new approach to the design of internal fixation plates. J Biomed Mater Res 17, 427-39 (1983).
    連結:
  33. 31. Gue, X. E. Mechanical properties of cortical bone and cancellous bone tissue (Cowin, 2001).
    連結:
  34. 32. Christel, P. et al. Callus characteristics following intramedullary nailing with stainless steel or epoxy-carbon nails. Arch Orthop Trauma Surg 103, 131-6 (1984).
    連結:
  35. 33. Buckwalter, J. A., Glimcher, M.J., Cooper, R.R. Recker, R. Bone biology. J. Bone Joint Surg. 77, 1256-1289 (1995).
    連結:
  36. 35. Aarden, E. M., Burger, E. H. & Nijweide, P. J. Function of osteocytes in bone. J Cell Biochem 55, 287-99 (1994).
    連結:
  37. 36. Hall, T. J. & Chambers, T. J. Molecular aspects of osteoclast function. Inflamm Res 45, 1-9 (1996).
    連結:
  38. 37. Roodman, G. D. Advances in bone biology: the osteoclast. Endocr Rev 17, 308-32 (1996).
    連結:
  39. 38. Roodman, G. D. Cell biology of the osteoclast. Exp Hematol 27, 1229-41 (1999).
    連結:
  40. 39. Burr, D. B. et al. Skeletal change in response to altered strain environments: is woven bone a response to elevated strain? Bone 10, 223-33 (1989).
    連結:
  41. 40. Burr, D. B. et al. The effects of altered strain environments on bone tissue kinetics. Bone 10, 215-21 (1989).
    連結:
  42. 41. Burr, D. B., Schaffler, M. B. & Frederickson, R. G. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 21, 939-45 (1988).
    連結:
  43. 42. Burr, D. B., Martin, R. B., Schaffler, M. B. & Radin, E. L. Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18, 189-200 (1985).
    連結:
  44. 44. Anderson, H. C. Mechanism of mineral formation in bone. Lab Invest 60, 320-30 (1989).
    連結:
  45. 45. Huffer, W. E. Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Lab Invest 59, 418-42 (1988).
    連結:
  46. 46. Arnoczky, S. P., Warren, R. F. & Ashlock, M. A. Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg Am 68, 376-85 (1986).
    連結:
  47. 47. Bourgois, R. & Burny, F. Measurement of the stiffness of fracture callus in vivo. A theoretical study. J Biomech 5, 85-91 (1972).
    連結:
  48. 48. Dunham, J., Catterall, A., Bitensky, L. & Chayen, J. Metabolic changes in the cells of the callus during fracture healing in the rat. Calcif Tissue Int 35, 56-61 (1983).
    連結:
  49. 50. Probst, A., Jansen, H., Ladas, A. & Spiegel, H. U. Callus formation and fixation rigidity: a fracture model in rats. J Orthop Res 17, 256-60 (1999).
    連結:
  50. 52. Claes, L., Eckert-Hubner, K. & Augat, P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 20, 1099-105 (2002).
    連結:
  51. 53. Miller, N. E. Clinical-experimental interactions in the development of neuroscience. A primer for nonspecialists and lessons for young scientists. Am Psychol 50, 901-11 (1995).
    連結:
  52. 55. An, Y. H., Friedman, R. J., Powers, D. L., Draughn, R. A. & Latour, R. A., Jr. Fixation of osteotomies using bioabsorbable screws in the canine femur. Clin Orthop, 300-11 (1998).
    連結:
  53. 56. Lane, J. M., Golembiewski, G., Boskey, A. L. & Posner, A. S. Comparative biochemical studies of the callus matrix in immobilized and non-immobilized fractures. Metab Bone Dis Relat Res 4, 61-8 (1982).
    連結:
  54. 57. McKinley, D. W. & Chambliss, M. L. Follow-up radiographs to detect callus formation after fractures. Arch Fam Med 9, 373-4 (2000).
    連結:
  55. 58. Bos, G. D., Goldberg, V. M., Zika, J. M., Heiple, K. G. & Powell, A. E. Immune responses of rats to frozen bone allografts. J Bone Joint Surg Am 65, 239-46 (1983).
    連結:
  56. 59. Korkusuz, F., Akin, S., Akkus, O. & Korkusuz, P. Assessment of mineral density and atomic content of fracture callus by quantitative computerized tomography. J Orthop Sci 5, 248-55 (2000).
    連結:
  57. 60. Schaffler, M. B., Radin, E. L. & Burr, D. B. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10, 207-14 (1989).
    連結:
  58. 61. Frost, H. M. The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop, 283-93 (1989).
    連結:
  59. 62. Frost, H. M. The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop, 294-309 (1989).
    連結:
  60. 63. Claes, L. E. Breakout session. 3: Mechanical enhancement of callus healing. Clin Orthop, S356 (1998).
    連結:
  61. 64. Kostopoulos, V. et al. Comparative study of callus performance achieved by rigid and sliding plate osteosynthesis based upon dynamic mechanical analysis. J Med Eng Technol 18, 61-6 (1994).
    連結:
  62. 66. Oni, O. A. The bony callus. Injury 28, 629-31 (1997).
    連結:
  63. 67. Kuhlman, R. E. & Bakowski, M. J. The biochemical activity of fracture callus in relation to bone production. Clin Orthop, 258-65 (1975).
    連結:
  64. 68. Ford, J. L., Robinson, D. E. & Scammell, B. E. The fate of soft callus chondrocytes during long bone fracture repair. J Orthop Res 21, 54-61 (2003).
    連結:
  65. 69. Andreassen, T. T., Fledelius, C., Ejersted, C. & Oxlund, H. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 72, 304-7 (2001).
    連結:
  66. 70. Blenman, P. R., Carter, D. R. & Beaupre, G. S. Role of mechanical loading in the progressive ossification of a fracture callus. J Orthop Res 7, 398-407 (1989).
    連結:
  67. 71. Ketenjian, A. Y. & Arsenis, C. Fracture callus cartilage differentiation in vitro. In Vitro 11, 35-40 (1975).
    連結:
  68. 72. White. The four biomechanical stages of fracture repair. Journal of bone and joint surgery 59A, 188-192 (1977).
    連結:
  69. 73. Perren, S. M. & Rahn, B. A. Biomechanics of fracture healing. Can J Surg 23, 228-32 (1980).
    連結:
  70. 75. Carter, D. R., Blenman, P. R. & Beaupre, G. S. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6, 736-48 (1988).
    連結:
  71. 76. Tetsuo Yamaji, K. A., Steffen Wolf, Peter Augar, Lutz Clae. The effect of micromovement on callus formation. J. of Orthopedic Science 6, 571-575 (2001).
    連結:
  72. 77. Loboa, E. G. Mechanical regulation of tissue differentiation in fracture healing and pseudoarthrosis development. Arthritis (2000).
    連結:
  73. 78. A.Gefen. computational simultations of stress shielding and bone resorption around existing and computer-designed orthopedic screws. Medical & Biological engineering & Computing 40, 311-322 (2002).
    連結:
  74. 79. Gefen, A. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med Biol Eng Comput 40, 311-22 (2002).
    連結:
  75. 80. Bos, R. R. et al. Bone-plates and screws of bioabsorbable poly (L-lactide)--an animal pilot study. Br J Oral Maxillofac Surg 27, 467-76 (1989).
    連結:
  76. 81. van der Elst, M., Klein, C. P., de Blieck-Hogervorst, J. M., Patka, P. & Haarman, H. J. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20, 121-8 (1999).
    連結:
  77. 83. Julie G. Pilitsis, D. R. L., Setti R. Rengachary. Bone Healing and spinal fusion. Neurosurgery focus 13, 1-8 (2002).
    連結:
  78. 84. Juutilainen, T. et al. Complications in the first 1,043 operations where self-reinforced poly-L-lactide implants were used solely for tissue fixation in orthopaedics and traumatology. Int Orthop 26, 122-5 (2002).
    連結:
  79. 85. Huiskes, R., Weinans, H. & van Rietbergen, B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop, 124-34 (1992).
    連結:
  80. 86. J.O. Hollinger, G. B. Biodegradable bone repair materials. Synthetic polymers and ceramics. Clinical Orthopedics and Related Research 207, 290-302 (1986).
    連結:
  81. 87. Laftman, P., Nilsson, O. S., Brosjo, O. & Stromberg, L. Stress shielding by rigid fixation studied in osteotomized rabbit tibiae. Acta Orthop Scand 60, 718-22 (1989).
    連結:
  82. 88. Ellis, E., 3rd. Rigid skeletal fixation of fractures. J Oral Maxillofac Surg 51, 163-73 (1993).
    連結:
  83. 89. Bugbee, W. D., Culpepper, W. J., 2nd, Engh, C. A., Jr. & Engh, C. A., Sr. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 79, 1007-12 (1997).
    連結:
  84. 90. Levenston, M. E., Beaupre, G. S., Schurman, D. J. & Carter, D. R. Computer simulations of stress-related bone remodeling around noncemented acetabular components. J Arthroplasty 8, 595-605 (1993).
    連結:
  85. 91. Illi, O. E. & Feldmann, C. P. Stimulation of fracture healing by local application of humoral factors integrated in biodegradable implants. Eur J Pediatr Surg 8, 251-5 (1998).
    連結:
  86. 92. Glassman, A. H., Engh, C. A. & Bobyn, J. D. Proximal femoral osteotomy as an adjunct in cementless revision total hip arthroplasty. J Arthroplasty 2, 47-63 (1987).
    連結:
  87. 93. Janes, G. C., Collopy, D. M., Price, R. & Sikorski, J. M. Bone density after rigid plate fixation of tibial fractures. A dual-energy X-ray absorptiometry study. J Bone Joint Surg Br 75, 914-7 (1993).
    連結:
  88. 94. Ang, K. C., Das De, S., Goh, J. C., Low, S. L. & Bose, K. Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. J Bone Joint Surg Br 79, 675-9 (1997).
    連結:
  89. 95. Daniels, A. U., Chang, M. K. & Andriano, K. P. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1, 57-78 (1990).
    連結:
  90. 96. Ewers, R. & Lieb-Skowron, J. Bioabsorbable osteosynthesis materials. Facial Plast Surg 7, 206-14 (1990).
    連結:
  91. 97. Juutilainen, T. et al. Bone mineral density in fractures treated with absorbable or metallic implants. Ann Chir Gynaecol 86, 51-5 (1997).
    連結:
  92. 100. Hattori, K., Tomita, N., Tamai, S. & Ikada, Y. Bioabsorbable thread for tight tying of bones. J Orthop Sci 5, 57-63 (2000).
    連結:
  93. 101. Lindqvist, C. Future of biodegradable osteosynthesis in maxillofacial fracture surgery. Br J Oral Maxillofac Surg 33, 69-70 (1995).
    連結:
  94. 102. Woo, S. L. et al. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1, 431-49 (1984).
    連結:
  95. 103. Nunamaker, D. M. Experimental models of fracture repair. Clinical Orthopedics and Related Research 355s, s56-s65 (1998).
    連結:
  96. 104. Suuronen, R. Biodegradable fracture-fixation devices in maxillofacial surgery. Int J Oral Maxillofac Surg 22, 50-7 (1993).
    連結:
  97. 105. Tschakaloff, A. et al. Degradation kinetics of biodegradable DL-polylactic acid biodegradable implants depending on the site of implantation. Int J Oral Maxillofac Surg 23, 443-5 (1994).
    連結:
  98. 參考資料 (一)中文部份
  99. 1. 胡德, 高分子物理與機械性質(下),國立編譯館主編,渤海堂文化事業有限公司印行,1994。
  100. 2. 祝志平,組織切片染色技術學(Histotechnology)
  101. 3. 王美惠,生物分解性聚乳酸薄膜因老化造成的圍觀機械性質變化
  102. 2. Perren, S. M., Matter, P., Ruedi, R. & Allgower, M. Biomechanics of fracture healing after internal fixation. Surg Annu 7, 361-90 (1975).
  103. 5. Suuronen, R., Kallela, I. & Lindqvist, C. Bioabsorbable plates and screws: Current state of the art in facial fracture repair. J Craniomaxillofac Trauma 6, 19-27; discussion 28-30 (2000).
  104. 23. Van Sliedregt A., H. S., Knock M.,. in 17th Annual Meeting of the sosiety for Biomaterials (Scottsdale, AZ, USA, 1991).
  105. 26. ASTM1635-95. Standard test method for in vitro degradationtesting of poly(L-lactic acid) resin and fabricated form for sirgical implants.
  106. 27. Draft. Guidance Document for Testing Biodegradable Polymer Implant Devices. FDA Good Guidance Practice (1996).
  107. 34. Clokie. Morphologic and radioautographic studies of bone formation in relatiion to titanium implants using the rat tibia as a model. Int J Oral Maxillofac Imps 10, 155-165 (1995).
  108. 43. Freemont, J. A. Basic bone cell biology. Int. J. Exp. Pathol. 74, 411-416 (1993).
  109. 49. Huang, S. C. Effect of electrical stimulation on callus maturation during callus distraction in rabbits. J Formos Med Assoc 96, 429-34 (1997).
  110. 51. Peretti, G. et al. A study of the development of fracture callus in the presence of an experimentally induced osteosarcoma. Ital J Orthop Traumatol 2, 403-12 (1976).
  111. 54. Denker, A. E., van Rheeden, R., Watson, M., Sandell, L.J. in 47th Annual Meeting, Orthopedic Research Society, (San Francisco, California, 2001).
  112. 65. Li, W. K. & Lane, J. M. Organic matrix of healing fracture callus: perifracture vs fracture callus. Surg Forum 29, 536-8 (1978).
  113. 74. Perren, S. M., Rahn, B. & Cordey, J. [Mechanics and biology of fracture healing]. Fortschr Kiefer Gesichtschir 19, 33-7 (1975).
  114. 82. Huiskes, R. Adaptive bone-remodeling analysis. Chir Organi Mov 77, 121-33 (1992).
  115. 98. Millett , B. C., M. J. Allen, N. Rushton. Bone Mineral Density Changes During Fracture Healing: A Densitometric Study in Rats. Annual Meeting Collection of the Orhtopedic Research Society inAtlanta (1996).
  116. 99. Gutwald, R. et al. Bioresorbable implants in maxillo-facial osteosynthesis: experimental and clinical experience. Injury 33 Suppl 2, B4-16 (2002).
Times Cited
  1. 王麗芬(2011)。生物可吸收性骨固定裝置於橈骨遠端骨折之臨床治療評估。臺北醫學大學生醫材料暨工程研究所學位論文。2011。1-72。 
  2. 何國寧(2004)。以光彈分析法研究貼附基質物理性質與細胞貼附之關係。臺北醫學大學牙醫學系碩博士班學位論文。2004。1-112。
  3. 楊建中(2008)。生物可吸收性骨固定裝置應用之臨床效果評估。臺北醫學大學生醫材料暨工程研究所學位論文。2008。1-50。