Reference
|
-
4. 闕如玉,生物可降解性牙用/骨用聚乳酸高分子摻何物的製備與鑑定
連結:
-
5. 陳欽德, 聚左乳酸摻何及其電漿表面處理之物化性探討
連結:
-
6. 江怡雯,生物分解性多孔質聚乳酸/氫氧磷灰石複合材的製備及性質之探討
連結:
-
7. 白裕仁,聚乳酸在活體內的組織反應與物理性質之變化
連結:
-
8. 黃玉琪,牙用/骨用聚乳酸的結晶與熱裂解行為之探討
連結:
-
9. 黃慧平, 聚乳酸薄膜及複合材之機械性質研究
連結:
-
10. 陳長志,聚乳酸系骨釘骨板之短期活體內組織反應與降解變化 (二) 英文部分
連結:
-
1. Kalfas, I. H. Principles of bone healing. Neurosurgery focus 10 (2001).
連結:
-
3. Partricia S. Landry, A. A. M., Kalia K. Sadasivan, James A. Albright. Bone Injury Response. Clinical Orthopedics and Related Research 332, 260-273 (1996).
連結:
-
4. Pietrzak, W. S., Caminear, D. S. & Perns, S. V. Mechanical characteristics of an absorbable copolymer internal fixation pin. J Foot Ankle Surg 41, 379-88 (2002).
連結:
-
6. Thordarson, D. B., Samuelson, M., Shepherd, L. E., Merkle, P. F. & Lee, J. Bioabsorbable versus stainless steel screw fixation of the syndesmosis in pronation-lateral rotation ankle fractures: a prospective randomized trial. Foot Ankle Int 22, 335-8 (2001).
連結:
-
7. Quereshy, F. A., Goldstein, J. A., Goldberg, J. S. & Beg, Z. The efficacy of bioresorbable fixation in the repair of mandibular fractures: an animal study. J Oral Maxillofac Surg 58, 1263-9 (2000).
連結:
-
8. Ramakrishna, S. Biomedical applicationsw of polimer-composite materials. Composites science and technoligy 61, 189-224 (2001).
連結:
-
9. Takizawa, T., Akizuki, S., Horiuchi, H. & Yasukawa, Y. Foreign body gonitis caused by a broken poly-L-lactic acid screw. Arthroscopy 14, 329-30 (1998).
連結:
-
10. Tams, J. et al. High-impact poly(L/D-lactide) for fracture fixation: in vitro degradation and animal pilot study. Biomaterials 16, 1409-15 (1995).
連結:
-
11. van der Elst, M., Dijkema, A. R., Klein, C. P., Patka, P. & Haarman, H. J. Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation: an animal study. Biomaterials 16, 103-6 (1995).
連結:
-
12. Schaffler, M. B. & Burr, D. B. Stiffness of compact bone: effects of porosity and density. J Biomech 21, 13-6 (1988).
連結:
-
13. San Roman, J. & Guillen Garcia, P. Partially biodegradable polyacrylic-polyester composites for internal bone fracture fixation. Biomaterials 12, 236-41 (1991).
連結:
-
14. Slivka, M. A. & Chu, C. C. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy. J Biomed Mater Res 37, 353-62 (1997).
連結:
-
15. Tieline, L. et al. The effect of transforming growth factor-beta1, released from a bioabsorbable self-reinforced polylactide pin, on a bone defect. Biomaterials 23, 3817-23 (2002).
連結:
-
16. Vasenius, J., Majola, A., Miettinen, E. L., Tormala, P. & Rokkanen, P. Do intramedullary rods of self-reinforced poly-L-lactide or poly-DL/L-lactide cause lactic acid acidosis in rabbits? Clin Mater 10, 213-8 (1992).
連結:
-
17. Lin, F. H., Chen, T. M., Lin, C. P. & Lee, C. J. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs 23, 186-94 (1999).
連結:
-
18. McVicar, I., Hatton, P. V. & Brook, I. M. Self-reinforced polyglycolic acid membrane: a bioresorbable material for orbital floor repair. Initial clinical report. Br J Oral Maxillofac Surg 33, 220-3 (1995).
連結:
-
19. Gogolewski, S. Bioresorbable polymers in trauma and bone surgery. Injury 31 Suppl 4, 28-32 (2000).
連結:
-
20. Shikinami Y, O. M. Bioresorbable devices made of forged composites of hydroxyapatite particle and poly-L-lactide. Biomaterials 22, 3197-3211 (1999).
連結:
-
21. furukawa T., M. Y., Yasunaga T., Nakagawa Y., Okada Y., Shikinami Y., Okuno M., Nakamura T.,. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide)composite rods for internal fixation of bone fractures. J. Biomed Mater Res 50, 410-419 (2000).
連結:
-
22. Bostman, O. M., Hirvensalo E., Makinen J., Rokkanen P.,. Freign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg 72, 592 (1990).
連結:
-
24. Bostman OM. Current concepts reviews: Absorbable implants for the fixation of fracture. J Bone Joint Surg 73A, 148-153 (1991).
連結:
-
25. Elst M van der, D. A., Klein Cpat, Patka P, Haarman. Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation : An animal study. Biomaterials, 103-106 (1995).
連結:
-
28. Roach, H. I. Bone Anatomy and Cell Biology. European Calcified Society (2003).
連結:
-
29. Rohner, D., Tay, A., Meng, C. S., Hutmacher, D. W. & Hammer, B. The sphenozygomatic suture as a key site for osteosynthesis of the orbitozygomatic complex in panfacial fractures: a biomechanical study in human cadavers based on clinical practice. Plast Reconstr Surg 110, 1463-71; discussion 1472-5 (2002).
連結:
-
30. Woo, S. L., Simon, B. R., Akeson, W. H., Gomez, M. A. & Seguchi, Y. A new approach to the design of internal fixation plates. J Biomed Mater Res 17, 427-39 (1983).
連結:
-
31. Gue, X. E. Mechanical properties of cortical bone and cancellous bone tissue (Cowin, 2001).
連結:
-
32. Christel, P. et al. Callus characteristics following intramedullary nailing with stainless steel or epoxy-carbon nails. Arch Orthop Trauma Surg 103, 131-6 (1984).
連結:
-
33. Buckwalter, J. A., Glimcher, M.J., Cooper, R.R. Recker, R. Bone biology. J. Bone Joint Surg. 77, 1256-1289 (1995).
連結:
-
35. Aarden, E. M., Burger, E. H. & Nijweide, P. J. Function of osteocytes in bone. J Cell Biochem 55, 287-99 (1994).
連結:
-
36. Hall, T. J. & Chambers, T. J. Molecular aspects of osteoclast function. Inflamm Res 45, 1-9 (1996).
連結:
-
37. Roodman, G. D. Advances in bone biology: the osteoclast. Endocr Rev 17, 308-32 (1996).
連結:
-
38. Roodman, G. D. Cell biology of the osteoclast. Exp Hematol 27, 1229-41 (1999).
連結:
-
39. Burr, D. B. et al. Skeletal change in response to altered strain environments: is woven bone a response to elevated strain? Bone 10, 223-33 (1989).
連結:
-
40. Burr, D. B. et al. The effects of altered strain environments on bone tissue kinetics. Bone 10, 215-21 (1989).
連結:
-
41. Burr, D. B., Schaffler, M. B. & Frederickson, R. G. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 21, 939-45 (1988).
連結:
-
42. Burr, D. B., Martin, R. B., Schaffler, M. B. & Radin, E. L. Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18, 189-200 (1985).
連結:
-
44. Anderson, H. C. Mechanism of mineral formation in bone. Lab Invest 60, 320-30 (1989).
連結:
-
45. Huffer, W. E. Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Lab Invest 59, 418-42 (1988).
連結:
-
46. Arnoczky, S. P., Warren, R. F. & Ashlock, M. A. Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg Am 68, 376-85 (1986).
連結:
-
47. Bourgois, R. & Burny, F. Measurement of the stiffness of fracture callus in vivo. A theoretical study. J Biomech 5, 85-91 (1972).
連結:
-
48. Dunham, J., Catterall, A., Bitensky, L. & Chayen, J. Metabolic changes in the cells of the callus during fracture healing in the rat. Calcif Tissue Int 35, 56-61 (1983).
連結:
-
50. Probst, A., Jansen, H., Ladas, A. & Spiegel, H. U. Callus formation and fixation rigidity: a fracture model in rats. J Orthop Res 17, 256-60 (1999).
連結:
-
52. Claes, L., Eckert-Hubner, K. & Augat, P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 20, 1099-105 (2002).
連結:
-
53. Miller, N. E. Clinical-experimental interactions in the development of neuroscience. A primer for nonspecialists and lessons for young scientists. Am Psychol 50, 901-11 (1995).
連結:
-
55. An, Y. H., Friedman, R. J., Powers, D. L., Draughn, R. A. & Latour, R. A., Jr. Fixation of osteotomies using bioabsorbable screws in the canine femur. Clin Orthop, 300-11 (1998).
連結:
-
56. Lane, J. M., Golembiewski, G., Boskey, A. L. & Posner, A. S. Comparative biochemical studies of the callus matrix in immobilized and non-immobilized fractures. Metab Bone Dis Relat Res 4, 61-8 (1982).
連結:
-
57. McKinley, D. W. & Chambliss, M. L. Follow-up radiographs to detect callus formation after fractures. Arch Fam Med 9, 373-4 (2000).
連結:
-
58. Bos, G. D., Goldberg, V. M., Zika, J. M., Heiple, K. G. & Powell, A. E. Immune responses of rats to frozen bone allografts. J Bone Joint Surg Am 65, 239-46 (1983).
連結:
-
59. Korkusuz, F., Akin, S., Akkus, O. & Korkusuz, P. Assessment of mineral density and atomic content of fracture callus by quantitative computerized tomography. J Orthop Sci 5, 248-55 (2000).
連結:
-
60. Schaffler, M. B., Radin, E. L. & Burr, D. B. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10, 207-14 (1989).
連結:
-
61. Frost, H. M. The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop, 283-93 (1989).
連結:
-
62. Frost, H. M. The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop, 294-309 (1989).
連結:
-
63. Claes, L. E. Breakout session. 3: Mechanical enhancement of callus healing. Clin Orthop, S356 (1998).
連結:
-
64. Kostopoulos, V. et al. Comparative study of callus performance achieved by rigid and sliding plate osteosynthesis based upon dynamic mechanical analysis. J Med Eng Technol 18, 61-6 (1994).
連結:
-
66. Oni, O. A. The bony callus. Injury 28, 629-31 (1997).
連結:
-
67. Kuhlman, R. E. & Bakowski, M. J. The biochemical activity of fracture callus in relation to bone production. Clin Orthop, 258-65 (1975).
連結:
-
68. Ford, J. L., Robinson, D. E. & Scammell, B. E. The fate of soft callus chondrocytes during long bone fracture repair. J Orthop Res 21, 54-61 (2003).
連結:
-
69. Andreassen, T. T., Fledelius, C., Ejersted, C. & Oxlund, H. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 72, 304-7 (2001).
連結:
-
70. Blenman, P. R., Carter, D. R. & Beaupre, G. S. Role of mechanical loading in the progressive ossification of a fracture callus. J Orthop Res 7, 398-407 (1989).
連結:
-
71. Ketenjian, A. Y. & Arsenis, C. Fracture callus cartilage differentiation in vitro. In Vitro 11, 35-40 (1975).
連結:
-
72. White. The four biomechanical stages of fracture repair. Journal of bone and joint surgery 59A, 188-192 (1977).
連結:
-
73. Perren, S. M. & Rahn, B. A. Biomechanics of fracture healing. Can J Surg 23, 228-32 (1980).
連結:
-
75. Carter, D. R., Blenman, P. R. & Beaupre, G. S. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6, 736-48 (1988).
連結:
-
76. Tetsuo Yamaji, K. A., Steffen Wolf, Peter Augar, Lutz Clae. The effect of micromovement on callus formation. J. of Orthopedic Science 6, 571-575 (2001).
連結:
-
77. Loboa, E. G. Mechanical regulation of tissue differentiation in fracture healing and pseudoarthrosis development. Arthritis (2000).
連結:
-
78. A.Gefen. computational simultations of stress shielding and bone resorption around existing and computer-designed orthopedic screws. Medical & Biological engineering & Computing 40, 311-322 (2002).
連結:
-
79. Gefen, A. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med Biol Eng Comput 40, 311-22 (2002).
連結:
-
80. Bos, R. R. et al. Bone-plates and screws of bioabsorbable poly (L-lactide)--an animal pilot study. Br J Oral Maxillofac Surg 27, 467-76 (1989).
連結:
-
81. van der Elst, M., Klein, C. P., de Blieck-Hogervorst, J. M., Patka, P. & Haarman, H. J. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20, 121-8 (1999).
連結:
-
83. Julie G. Pilitsis, D. R. L., Setti R. Rengachary. Bone Healing and spinal fusion. Neurosurgery focus 13, 1-8 (2002).
連結:
-
84. Juutilainen, T. et al. Complications in the first 1,043 operations where self-reinforced poly-L-lactide implants were used solely for tissue fixation in orthopaedics and traumatology. Int Orthop 26, 122-5 (2002).
連結:
-
85. Huiskes, R., Weinans, H. & van Rietbergen, B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop, 124-34 (1992).
連結:
-
86. J.O. Hollinger, G. B. Biodegradable bone repair materials. Synthetic polymers and ceramics. Clinical Orthopedics and Related Research 207, 290-302 (1986).
連結:
-
87. Laftman, P., Nilsson, O. S., Brosjo, O. & Stromberg, L. Stress shielding by rigid fixation studied in osteotomized rabbit tibiae. Acta Orthop Scand 60, 718-22 (1989).
連結:
-
88. Ellis, E., 3rd. Rigid skeletal fixation of fractures. J Oral Maxillofac Surg 51, 163-73 (1993).
連結:
-
89. Bugbee, W. D., Culpepper, W. J., 2nd, Engh, C. A., Jr. & Engh, C. A., Sr. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 79, 1007-12 (1997).
連結:
-
90. Levenston, M. E., Beaupre, G. S., Schurman, D. J. & Carter, D. R. Computer simulations of stress-related bone remodeling around noncemented acetabular components. J Arthroplasty 8, 595-605 (1993).
連結:
-
91. Illi, O. E. & Feldmann, C. P. Stimulation of fracture healing by local application of humoral factors integrated in biodegradable implants. Eur J Pediatr Surg 8, 251-5 (1998).
連結:
-
92. Glassman, A. H., Engh, C. A. & Bobyn, J. D. Proximal femoral osteotomy as an adjunct in cementless revision total hip arthroplasty. J Arthroplasty 2, 47-63 (1987).
連結:
-
93. Janes, G. C., Collopy, D. M., Price, R. & Sikorski, J. M. Bone density after rigid plate fixation of tibial fractures. A dual-energy X-ray absorptiometry study. J Bone Joint Surg Br 75, 914-7 (1993).
連結:
-
94. Ang, K. C., Das De, S., Goh, J. C., Low, S. L. & Bose, K. Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. J Bone Joint Surg Br 79, 675-9 (1997).
連結:
-
95. Daniels, A. U., Chang, M. K. & Andriano, K. P. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1, 57-78 (1990).
連結:
-
96. Ewers, R. & Lieb-Skowron, J. Bioabsorbable osteosynthesis materials. Facial Plast Surg 7, 206-14 (1990).
連結:
-
97. Juutilainen, T. et al. Bone mineral density in fractures treated with absorbable or metallic implants. Ann Chir Gynaecol 86, 51-5 (1997).
連結:
-
100. Hattori, K., Tomita, N., Tamai, S. & Ikada, Y. Bioabsorbable thread for tight tying of bones. J Orthop Sci 5, 57-63 (2000).
連結:
-
101. Lindqvist, C. Future of biodegradable osteosynthesis in maxillofacial fracture surgery. Br J Oral Maxillofac Surg 33, 69-70 (1995).
連結:
-
102. Woo, S. L. et al. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1, 431-49 (1984).
連結:
-
103. Nunamaker, D. M. Experimental models of fracture repair. Clinical Orthopedics and Related Research 355s, s56-s65 (1998).
連結:
-
104. Suuronen, R. Biodegradable fracture-fixation devices in maxillofacial surgery. Int J Oral Maxillofac Surg 22, 50-7 (1993).
連結:
-
105. Tschakaloff, A. et al. Degradation kinetics of biodegradable DL-polylactic acid biodegradable implants depending on the site of implantation. Int J Oral Maxillofac Surg 23, 443-5 (1994).
連結:
-
參考資料 (一)中文部份
-
1. 胡德, 高分子物理與機械性質(下),國立編譯館主編,渤海堂文化事業有限公司印行,1994。
-
2. 祝志平,組織切片染色技術學(Histotechnology)
-
3. 王美惠,生物分解性聚乳酸薄膜因老化造成的圍觀機械性質變化
-
2. Perren, S. M., Matter, P., Ruedi, R. & Allgower, M. Biomechanics of fracture healing after internal fixation. Surg Annu 7, 361-90 (1975).
-
5. Suuronen, R., Kallela, I. & Lindqvist, C. Bioabsorbable plates and screws: Current state of the art in facial fracture repair. J Craniomaxillofac Trauma 6, 19-27; discussion 28-30 (2000).
-
23. Van Sliedregt A., H. S., Knock M.,. in 17th Annual Meeting of the sosiety for Biomaterials (Scottsdale, AZ, USA, 1991).
-
26. ASTM1635-95. Standard test method for in vitro degradationtesting of poly(L-lactic acid) resin and fabricated form for sirgical implants.
-
27. Draft. Guidance Document for Testing Biodegradable Polymer Implant Devices. FDA Good Guidance Practice (1996).
-
34. Clokie. Morphologic and radioautographic studies of bone formation in relatiion to titanium implants using the rat tibia as a model. Int J Oral Maxillofac Imps 10, 155-165 (1995).
-
43. Freemont, J. A. Basic bone cell biology. Int. J. Exp. Pathol. 74, 411-416 (1993).
-
49. Huang, S. C. Effect of electrical stimulation on callus maturation during callus distraction in rabbits. J Formos Med Assoc 96, 429-34 (1997).
-
51. Peretti, G. et al. A study of the development of fracture callus in the presence of an experimentally induced osteosarcoma. Ital J Orthop Traumatol 2, 403-12 (1976).
-
54. Denker, A. E., van Rheeden, R., Watson, M., Sandell, L.J. in 47th Annual Meeting, Orthopedic Research Society, (San Francisco, California, 2001).
-
65. Li, W. K. & Lane, J. M. Organic matrix of healing fracture callus: perifracture vs fracture callus. Surg Forum 29, 536-8 (1978).
-
74. Perren, S. M., Rahn, B. & Cordey, J. [Mechanics and biology of fracture healing]. Fortschr Kiefer Gesichtschir 19, 33-7 (1975).
-
82. Huiskes, R. Adaptive bone-remodeling analysis. Chir Organi Mov 77, 121-33 (1992).
-
98. Millett , B. C., M. J. Allen, N. Rushton. Bone Mineral Density Changes During Fracture Healing: A Densitometric Study in Rats. Annual Meeting Collection of the Orhtopedic Research Society inAtlanta (1996).
-
99. Gutwald, R. et al. Bioresorbable implants in maxillo-facial osteosynthesis: experimental and clinical experience. Injury 33 Suppl 2, B4-16 (2002).
|