Title

革新的疾病相關路徑鑑定法:以心肌梗塞跨平台資料為例

Translated Titles

A Revolutionary Method for Disease Pathways Identification Using Myocardial Infarction Cross-Platform Data

DOI

10.6831/TMU.2012.00223

Authors

吳東懋

Key Words

基因調控網路 ; 路徑分析 ; Gene Network ; Pathway Analysis

PublicationName

臺北醫學大學醫學資訊研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

李元綺

Content Language

繁體中文

Chinese Abstract

人類從出生開始便被不可預知的疾病所困擾著,人們試著用各種方法遠離疾病的糾纏,各式研究也隨之展開;從基因的角度來看疾病,以往生物學家在實驗室中與少數幾個基因搏鬥的血淚史已成為過去式,隨著科技的進步讓我們能以更大量且細微的探索人體基因體表現的變化。隨著各種研究漸趨成熟與支持,基因與疾病的研究由單獨基因的解析,推向基因調控以至於基因反應路徑的研究,人們相信基因相互的調控關係與疾病的產生有著密不可分的關連,因此近年來基因調控網路成為相當熱門的議題;現有的基因路徑分析法存在著許多根本性的問題,且在眾多的研究中獨缺整合全基因調控網路並以全路徑為觀點的分析,這樣的缺憾讓基因路徑分析無法跳脫傳統觀察少數基因的包袱,因此我們建立一套疾病相關路徑鑑定方法,除了不同於以往以基因表現量的方法分析,也打破了現有的反應路徑分析法;從建立全基因調控網路、最短反應路徑尋找、反應路徑與疾病關係的分析判定,到驗證分析方法的可信度。此方法目的在判別與疾病有關連性之反應路徑,相信必能精確指出與疾病相關的基因與基因調控路徑,除了開拓路徑分析的新視野外,更提供給生技製藥的標靶藥物開發更好的選擇。

English Abstract

Since the day we were born, we have been afflicted with all kinds of illness and diseases. To reduce the pain and fear, all kinds of approaches to attack diseases have been developed. From the aspect of genetics studies, the researchers used to work on a couple of genes that might relate to diseases in all their scientific life. However, along with the advance of biotechnology, we are able to trace and monitor the alteration of gene expression in a whole-genome scale. Furthermore, the chances are the approaches have been moved from individual gene studies to gene-gene interactions and even the gene network, as it is believed that genes are collaboratively functioning in groups instead of working by themselves alone. Therefore, pathway analysis has been getting more attention recently. However, the pathway analysis used update exists many unsolved issues, most importantly, it lacks the integrity of whole-genome regulated networks that actually reflect the gene reaction pathways. We develop a method to identify “Disease-associated Pathways”. Here in this study, we will (1) develop a regulatory gene network by combining each gene-gene reaction pair, (2) identify the shortest pathways from a whole genome network, (3) establish pathway analysis algorithms to calculate the full pathway expression value, and (4) distinguish the disease and non-disease pathways by incorporating microarray data. The purpose of this pipe-line approach is to quest for disease-associated pathways and by unveiling the pathways, it will also provide a better choice for drug target in pharmaceutical industry in the near future.

Topic Category 基礎與應用科學 > 資訊科學
醫藥衛生 > 醫藥總論
醫學科技學院 > 醫學資訊研究所
Reference
  1. 1.(2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34: D322-326
    連結:
  2. 2.(2008) The Gene Ontology project in 2008. Nucleic Acids Res 36: D440-444
    連結:
  3. 3.Alvo M, Liu Z, Williams A, Yauk C (2010) Testing for mean and correlation changes in microarray experiments: an application for pathway analysis. BMC Bioinformatics 11: 60
    連結:
  4. 4.Chen L, Xuan J, Gu J, Wang Y, Zhang Z, Wang TL, Shih leM (2012) Integrative network analysis to identify aberrant pathway networks in ovarian cancer. Pac Symp Biocomput 2012:31-42
    連結:
  5. 5.Fang Z, Tian W, Ji H, (2011) A network-based gene-weighting approach for pathway analysis. Cell Res. 2011 Sep 6. doi:10.1038/cr.2011.149.
    連結:
  6. 6.Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140
    連結:
  7. 8.Faust K, Dupont P, Callut J, van Helden J (2010) Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics 26: 1211-1218
    連結:
  8. 9.Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA (2010) Protein Kinase B (PKB/Akt), a Key Mediator of the PI3K Signaling Pathway. Curr Top Microbiol Immunol
    連結:
  9. 10.Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38: D355-360
    連結:
  10. 11.Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34: D354-357
    連結:
  11. 12.Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277-280
    連結:
  12. 13.Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E (2006) TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res 34: D546-551
    連結:
  13. 14.Sanders P. (2009) Fast Route Planning. YouTube.
    連結:
  14. 15.Tanikawa C, Ri C, Kumar V, Nakamura Y, Matsuda K (2010) Crosstalk of EDA-A2/XEDAR in the p53 signaling pathway. Mol Cancer Res 8: 855-863
    連結:
  15. 17.W. DE. (1959) A note on two problems in connexion with graphs. Numerische Mathematlk, pp. 269 - 271.
    連結:
  16. 19.Hall, JL, Grindle S, Han X, Fermin D, Park S, Chen Y, Bache RJ, Mariash A, Guan Z, Ormaza S, Thompson J, Graziano J, Sam Lazaro SE, Pan S, 20.Simari RD, Miller LW. (2004) Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics 17, 283-291.
    連結:
  17. 21.Strom CC, Aplin M, Ploug T, Christoffersen TE, Langfort J, Viese M, Galbo H, Haunso S, Sheikh SP(2005).Expression profiling reveals differences in metabolic gene expression between
    連結:
  18. 22.Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, Izumo S (2004). Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 16: 349-360.
    連結:
  19. 23.Matsumoto Y, Tsukada Y, Miyakoshi A, Sakuma H, Kohyama K. C protein-induced myocarditis and subsequent dilated cardiomyopathy: rescue from death and prevention of dilated cardiomyopathy by chemokine receptor DNA therapy. J Immunol 2004 Sep 01;173(5):3535-41.
    連結:
  20. 24.Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2009 Feb 01;30(2):85-94.
    連結:
  21. 25.Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH. Quantitative Control of Adaptive Cardiac Hypertrophy by Acetyltransferase p300. Circulation 2008 Aug 26;118(9):934-46.
    連結:
  22. 26.Liu Q, Chen X, Macdonnell SM, Kranias EG, Lorenz JN, Leitges M, Houser SR, Molkentin JD. Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res 2009 Jul 17;105(2):194-200.
    連結:
  23. 28.Liu Q, Chen X, Macdonnell SM, Kranias EG, Lorenz JN, Leitges M, Houser SR, Molkentin JD. Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res 2009 Jul 17;105(2):194-200.
    連結:
  24. 29.Morimoto H, Takahashi M, Shiba Y, Izawa A, Ise H, Hongo M, Hatake K, Motoyoshi K, Ikeda U. Bone Marrow-Derived CXCR4+ Cells Mobilized by Macrophage Colony-Stimulating Factor Participate in the Reduction of Infarct Area and Improvement of Cardiac Remodeling after Myocardial Infarction in Mice. Am J Pathol 2007 Sep 01;171(3):755-66.
    連結:
  25. 7.Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409: 391-395
  26. 16.Thomas H. Cormen CEL, Ronald L. Rivest. (2001) Introduction to Algorithms. In Leiserson CE (ed.), pp. Section 22.23: Depth-first search, pp. 540–549.
  27. 18.Braunwald, E. (Ed.). (1992). Heart disease: A textbook of cardiovascular medicine (4th ed., pp.1200-1222). Philadephia, PA: W. B. Saunders Company
  28. 27.Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 2004 Mar 01;10(3):248-54.
  29. 30.戴政. (2000) 生物醫學統計概論. pp. P.235-P.241.
  30. 31.沈明來. (1997) 實用無母數統計學與計數資料分析. pp. p.292- p.297.