Title

溶凝膠浸鍍法與微弧氧化法製備功能性氧化層

Translated Titles

Functional oxide layers by sol–gel dip-coating and micro-arc oxidation

DOI

10.6341/fcu.P0126616

Authors

陳光幅

Key Words

透明導電薄膜 ; 光穿透率 ; 導電型態 ; 微弧氧化 ; 微硬度 ; 耐腐蝕性 ; 耐磨耗性 ; Transparent conducting oxide ; Optical transmittance ; Electrical conductivity ; Micro-arc oxidation ; Micro-hardness ; Corrosion resistance ; Wear resistance

PublicationName

逢甲大學材料科學與工程學系學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

博士

Advisor

金重勳

Content Language

英文

Chinese Abstract

膜厚從數十奈米至數百微米的功能性氧化膜,因其特殊的性能被廣泛運用在工業中。透明導電氧化物(transparent conducting oxides, TCO)能使絕緣的玻璃同時具有透明及導電性。另外也能在相對較軟的金屬,如:鋁、鎂、鈦及其合金上披覆緊密且較硬的氧化膜層。在此研究使用兩種方法披覆功能性氧化膜,分別是溶凝膠浸鍍法製備TCO膜與微弧氧化(Micro-arc oxidation, MAO)製備保護性氧化膜。在TCO方面,我們關注添加劑對於玻璃基板上浸鍍氧化錫薄膜之結構、光穿透率、電性的影響,更注重導電型態的改變。在6061鋁合金披覆MAO膜,探討電源、添加劑、處理時間對於膜層機械、耐腐蝕和耐磨耗性質之影響。 本研究探討了氧化錫分別添加硼(BTO)、氟(FTO)與釹-氟(NFTO)等TCO系統。BTO薄膜其導電型態從n態(未添加B)轉變為p態(1–4 at.% B)接著又變成n態(5 at.% B),係以霍爾效應與熱電效應證明。這是浸鍍所產生的缺陷及Sn3O4和B2O3相分離所造成。FTO薄膜是以無毒的SnF2取代有毒的HF或NH4F之綠色製程。以0–10 mol% SnF2所製成之FTO膜會對其結構、電阻率和光穿透率有實質影響,其性能可與非綠色製程之膜比美。首次發現文獻從未報導過的以NdF3作為共摻物,浸鍍透明且高導電性之p型NFTO薄膜。用2 mol% NdF3製備NFTO薄膜結果顯示,有最低電阻8.2×10-3  cm、最大電洞濃度8.96×1019 cm–3和電遷移率9.74 cm2 V–1 s–1。 在6061鋁合金披覆MAO膜,係用一簡單且極少文獻報導的直流加交流電源,我們稱之為複合電源。複合電源所得MAO膜與單一直流電源相比,其膜厚較薄、硬度較高和較好耐腐蝕性。除此之外,也探討添加劑對於MAO膜層性質之影響。矽酸鹽電解液添加氨水後發現,所得氧化膜發生異常生長之現象。氧化膜從平均44 μm (未添加)變成135μm (氨水添加量 60 ml/L),孔洞大小以及裂痕數量減少。這使氧化膜的耐蝕性有很大的改善。在另一項研究中,在偏矽酸鈉與硼酸電解液中添加鑽石粉(0、3、6、9 g/L),結果顯示添加6 g/L鑽石粉其MAO膜有最佳耐蝕性與耐磨耗性。

English Abstract

Functional oxide films with thickness from a few tens of nanometers to several hundred micrometers exhibiting special properties are widely applied in industries. These include transparent conducting oxides (TCO) which make insulating glasses conducting and transparent. They may also include hard and hermetic oxide coatings on relatively soft metals such as Al, Mg and Ti and their alloys. The purposes of this study are to explore the two extremes of surface modification, i.e., TCO by dip-coating and protective oxides by micro-arc oxidation. For TCO studies, our concerns are the effects of dopant on the structure, optical transmittance, electrical conductivity and in particular the change in conduction type of tin oxide film as deposited on a glass substrate. For MAO coating we explore factors such as power supply, additives or treatment time on properties of mechanical, corrosion resistance and tribology of ceramic coatings on 6061 Al alloy. The TCO systems investigated in this dissertation were boron doped tin oxide (BTO), fluorine doped tin oxide (FTO) and neodymium-fluorine doped tin oxide (NFTO) films. For BTO films, conduction type changes from n- (un-doped) to p- (1–4 at.% B), then to n-types (5 at.% B), as evidenced from Hall-effect and Seebeck-effect measurements. This is explained by doping-generated defects and phase separations of Sn3O4 and B2O3. The essence of FTO films was the preparation by using a green sol–gel dip-coating process, using non-toxic SnF2 as fluorine source to replace conventional toxic HF or NH4F. Effect of SnF2 content, 0–10 mol%, on structure, electrical resistivity, and optical transmittance of the films were investigated and discussed. Transparent p-type conducting oxide films with high conductivity and transparency of neodymium-fluorine doped tin oxide has been discovered for the first time in literature with NdF3 used as both neodymium and fluorine sources. The NFTO film with 2 mol% NdF3 shows the lowest electrical resistivity, 8.2 x 10–3  cm, the highest hole-concentration, 8.96 x 1019 cm–3 and a Hall mobility 9.74 cm2 V–1 s–1. For MAO coatings on 6061 Al alloy, a simple and less reported hybrid voltage (a direct current coupled with an alternative current, DC + AC) as power supply for the MAO process was explored. Comparing with MAO layers obtained by using DC only, the oxide-layer by hybrid voltages is a little thinner, much harder and much more corrosion resistant. In addition, the effect of additives into electrolyte to the properties of MAO coating is investigated. An anomalous layer-thickening occurred when adding ammonia water into the silicate electrolyte. Average coating thickness increases from 44 m (un-added bath) to 135 m (60 mL/L added bath), along with the reduction in number and size of the pores and cracks. This causes a great improvement in corrosion resistance of the coating. In another study, diamond powder (0, 3, 6 and 9 g/L) was used into the electrolyte containing Na2SiO3 and H3BO3. With 6 g/L added content, the MAO coating shows the best performance in wear and corrosion resistance.

Topic Category 理學院 > 材料科學與工程學系
工程學 > 工程學總論
Reference
  1. [1] Y. Matsuura and K. Takahata, Stabilization of SnO2 sintered gas sensors, Sensors Actuators B 5 (1991) 205–209.
    連結:
  2. [2] G. Sberveglieri, C. Perego, F. Parmigiani, and G. Quattroni, Sn1-xFexOy: a new material with high carbon monoxide sensitivity, Sensors and Actuators B: Chemical 20 (1994) 163–167.
    連結:
  3. [3] Z. Wang and L. Liu, Synthesis and ethanol sensing properties of Fe-doped SnO2 nanofibers, Materials Letters 63 (2009) 917–919.
    連結:
  4. [4] S. Rani, S.C. Roy, and M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films, Sensors and Actuators B: Chemical 122 (2007) 204–210.
    連結:
  5. [5] B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Materials Science and Engineering B 71 (2000) 301–305.
    連結:
  6. [6] A.J. Haider, S.S. Shaker, and A.H. Mohammed, A study of morphological, optical and gas sensing properties for pure and Ag doped SnO2 prepared by pulsed laser deposition (PLD), Energy Procedia 36 (2013) 776–787.
    連結:
  7. [7] N. Bajpai, S.A. Khan, R.S. Kher, N. Bramhe, S.J. Dhoble, and A. Tiwari, Thermoluminescence investigation of sol–gel derived and γ-irradiated SnO2:Eu3+ nanoparticles, Journal of Luminescence 145 (2014) 940–943.
    連結:
  8. [8] Q. Kuang, Z.Y. Jiang, Z.X. Xie, S.C. Lin, Z.W. Lin, S.Y. Xie, R.B. Huang, and L.S. Zheng, Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2, Journal of the American Chemical Society 127 (2005) 11777–11784.
    連結:
  9. [9] D. Slocombe, A. Porch, M. Pepper, and P.P. Edwards, The Mott transition and optimal performance of transparent conducting oxides in thin-film solar cells, Energy and Environmental Science 5 (2012) 5387–5391.
    連結:
  10. [10] T. Tharsika, A.S.M.A. Haseeb, and M.F.M. Sabri, Structural and optical properties of ZnO–SnO2 mixed thin films deposited by spray pyrolysis, Thin Solid Films 558 (2014) 283–288.
    連結:
  11. [11] R. Anandhi, K. Ravichandran, and R. Mohan, Conductivity enhancement of ZnO:F thin films by the deposition of SnO2:F over layers for optoelectronic applications, Materials Science and Engineering B 178 (2013) 65–70.
    連結:
  12. [12] N.S. Timonah, Y. Chunhui, and S. Liang, Structural, optical and electrical properties of Fe-doped SnO2 fabricated by sol–gel dip coating technique, Materials Science in Semiconductor Processing 13 (2010) 125–131.
    連結:
  13. [13] G. Turgut and E. Sönmez, Synthesis and characterization of Mo doped SnO2 thin films with spray pyrolysis, Superlattices and Microstructures 69 (2014) 175–186.
    連結:
  14. [14] B.R. Koo and H.J. Ahn, Structural, electrical, and optical properties of Sb-doped SnO2 transparent conductive oxides fabricated using an electrospray technique, Ceramics International 40 (2014) 4375–4381.
    連結:
  15. [15] K. Ravichandran and K. Thirumurugan, Type inversion and certain physical properties of spray pyrolysed SnO2:Al films for novel transparent electronics applications, Journal of Materials Science & Technology 30 (2014) 97–102.
    連結:
  16. [16] E.F. Keskenler, G. Turgut, S. Aydınb, and S. Dogan, W doped SnO2 growth via sol–gel routes and characterization: Nanocubes, Optik 124 (2013) 4827–4831.
    連結:
  17. [17] X. Liu, K. Pan, W. Li, D. Hu, S. Liu, and Y. Wang, Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol–gel method under different heat treatments, Ceramics International 40 (2014) 9931–9939.
    連結:
  18. [18] C. Nahm, S. Shin, W. Lee, J.I. Kim, D.R. Jung, J. Kim, S. Nam, S. Byun, and B. Park, Electronic transport and carrier concentration in conductive ZnO:Ga thin films, Current Applied Physics 13 (2013) 415–418.
    連結:
  19. [19] J. Ramesh, G. Pasupathi, R. Mariappan, V.S. Kumar, and V. Ponnuswamy, Structural and optical properties of Ni doped ZnO thin films using sol–gel dip coating technique, Optik 124 (2013) 2023–2027.
    連結:
  20. [20] S.V. Mohite and K.Y. Rajpure, Synthesis and characterization of Sb doped ZnO thin films for photodetector application, Optical Materials 36 (2014) 833–838.
    連結:
  21. [21] I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, and A. Dinia, Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method, Journal of Applied Physics 109 (2011) 033708–033708-6.
    連結:
  22. [22] R. Swapna, M. Ashok, G. Muralidharan, and M.C.S. Kumar, Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis, Journal of Analytical and Applied Pyrolysis 102 (2013) 68–75.
    連結:
  23. [23] I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, and F. Atay, Optical, structural and surface characterization of ultrasonically sprayed CdO:F films, Journal of Alloys and Compounds 509 (2011) 1947–1952.
    連結:
  24. [24] K. Sankarasubramanian, P. Soundarrajan, T. Logu, S.Kiruthika, K. Sethuraman, R. RameshBabu, and K. Ramamurthi, Influence of Mn doping on structural, optical and electrical properties of CdO thin films prepared by cost effective spray pyrolysis method, Materials Science in Semiconductor Processing 26 (2014) 346–353.
    連結:
  25. [25] S. Aydemir, S. Kose, M.S. Kilickayaa, and V. Ozkan, Influence of Al-doping on microstructure and optical properties of sol–gel derived CdO thin films, Superlattices and Microstructures 71 (2014) 72–81.
    連結:
  26. [26] Z. Serbetc, R.K. Gupta, and F. Yakuphanoglu, Preparation and characterization of nanorods Sb doped CdO films by sol–gel technique, Journal of Sol–Gel Science and Technology 61 (2012) 477–483.
    連結:
  27. [27] Y. Sato, Y. Sanno, C. Tasaki, N. Oka, T. Kamiyama, and Y. Shigesato, Electrical and optical properties of Nb-doped TiO2 films deposited by dc magnetron sputtering using slightly reduced Nb-doped TiO2-x ceramic targets, Journal of Vacuum Science & Technology A 28 (2010) 851–851-6.
    連結:
  28. [28] V.V. Kondalkar, S.S. Mali, N.B. Pawar, R.M. Mane, S. Choudhury, C.K. Hong, P.S. Patil, S.R. Patil, P.N. Bhosale, and J.H. Kim, Microwave-assisted rapid synthesis of highly porous TiO2 thin films with nanocrystalline framework for efficient photoelectrochemical conversion, Electrochimica Acta 143 (2014) 89–97.
    連結:
  29. [29] M.A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, and M. Abd-Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis, Materials Research Bulletin 44 (2009) 1458–1461.
    連結:
  30. [30] A.K. Kulkarni, T.Lim, M. Khan, and K.H. Schulz, Electrical, optical, and structural properties of indium-tin-oxide thin films deposited on polyethylene terephthalate substrates by rf sputtering, Journal of Vacuum Science & Technology A 16 (1998) 1636–1636-6.
    連結:
  31. [31] S. Seki, Y. Sawada, M. Ogawa, M. Yamamoto, Y. Kagota, A. Shida, and M. Ide, Highly conducting indium-tin-oxide transparent films prepared by dip-coating with an indium carboxylate salt, Surface and Coatings Technology 169–170 (2003) 525–527.
    連結:
  32. [32] B. Benrabah, A. Bouaza, A. Kadari, and M.A. Maaref, Impedance studies of Sb doped SnO2 thin film prepared by sol gel process, Superlattices and Microstructures 50 (2011) 591–600.
    連結:
  33. [33] T.M. Hammad and N.K. Hejazy, Structural, electrical and optical properties of ATO thin films fabricated by dip coating method, International Nano Letters 1 (2011) 123–128.
    連結:
  34. [34] A. Benhaoua, A. Rahal, B. Benhaoua, and M. Jlassi, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic, Superlattices and Microstructures 70 (2014) 61–69.
    連結:
  35. [35] Q. Gao, H. Jiang, C. Li, Y. Mab, X. Li, Z. Ren, Y. Liu, C. Song, and G. Han, Tailoring of textured transparent conductive SnO2:F thin films, Journal of Alloys and Compounds 574 (2013) 427–431.
    連結:
  36. [36] H. Kim, R.C.Y. Auyeung, and A. Piqué, Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition, Thin Solid Films 516 (2008) 5052–5056.
    連結:
  37. [38] W.Z. Samad, M.M. Salleh, A. Shafiee, and M.A. Yarmo, Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique, Sains Malaysiana 40 (2011) 251–257.
    連結:
  38. [39] S. Chaisitsak, Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors, Sensors 11 (2011) 7127–7140.
    連結:
  39. [40] P.K. Biwas, L. Dua, A. De, and T. Chaudhuri, Aquo-organic sol-based F-doped SnO2 (Sn:F = 90:10) coatings on glass, Materials Science-Poland 24 (2006) 367–374.
    連結:
  40. [41] E. Alsrayheen, E. McLeod, R.R. Jr., H. Molero, and V. Birss, Impact of ac/dc spark anodizing on the corrosion resistance of Al–Cu alloys, Electrochimica Acta 56 (2011) 6041–6048.
    連結:
  41. [42] H. Fadaee and M. Javidi, Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation, Journal of Alloys and Compounds 604 (2014) 36–42.
    連結:
  42. [43] U. Malayoglu, K.C. Tekin, U. Malayoglu, and S. Shrestha, An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy, Materials Science and Engineering A 528 (2011) 7451–7460.
    連結:
  43. [45] G. Lv, W. Gu, H. Chen, W. Feng, M.L. Khosa, L. Li, E. Niu, G. Zhang, and S.Z. Yang, Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte, Applied Surface Science 253 (2006) 2947–2952.
    連結:
  44. [46] E. Matykina, A. Berkani, P. Skeldon, and G.E. Thompson, Real-time imaging of coating growth during plasma electrolytic oxidation of titanium, Electrochimica Acta 53 (2007) 1987–1994.
    連結:
  45. [47] F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, and J. Beauvir, Tailored aluminum oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process, Surface & Coatings Technology 201 (2007) 8677–8682.
    連結:
  46. [49] J. Martin, P. Leone, A. Nominé, D. Veys-Renaux, G. Henrion, and T. Belmonte, Influence of electrolyte ageing on the plasma electrolytic oxidation of aluminium, Surface and Coatings Technology 269 (2015) 36–46.
    連結:
  47. [50] Y.S. Kim, H.W. Yang, K.R. Shin, Y.G. Ko, and D.H. Shin, Heat dissipation properties of oxide layers formed on 7075 Al alloy via plasma electrolytic oxidation, Surface and Coatings Technology 269 (2015) 114–118.
    連結:
  48. [51] H.H. Wu, J.B. Wang, B.Y. Long, B.H. Long, Z.S. Jin, N.D. Wang, F.R. Yu, and D.M. Bi, Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy, Applied Surface Science 252 (2005) 1545–1552.
    連結:
  49. [52] H.F. Guo and M.Z. An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance, Applied Surface Science 246 (2005) 229–238.
    連結:
  50. [53] R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, and R.L. Jones, Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings, Surface and Coatings Technology 1999 (2005) 158–167.
    連結:
  51. [54] Y.M. Wang, B.L. Jiang, L.X. Guo, and T.Q. Lei, Tribological behavior of microarc oxidation coatings formed on titanium alloys against steel in dry and solid lubrication sliding, Applied Surface Science 252 (2006) 2989–2998.
    連結:
  52. [55] W.C. Gu, G.H. Lv, H. Chen, G.L. Chen, W.R. Feng, and S.Z. Yang, Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy, Materials Science and Engineering A 447 (2007) 158–162.
    連結:
  53. [56] M. Laleh, A.S. Rouhaghdam, T. Shahrabi, and A. Shanghi, Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D, Journal of Alloys and Compounds 496 (2010) 548–552.
    連結:
  54. [57] J.H. Wang, M.H. D, F.Z. Han, and J. Yang, Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys, Applied Surface Science 292 (2014) 658–664.
    連結:
  55. [58] Y. Yürektürk, F. Muhaffel, and M. Baydoğan, Characterization of micro arc oxidized 6082 aluminum alloy in an electrolyte containing carbon nanotubes, Surface and Coatings Technology 269 (2015) 83–90.
    連結:
  56. [59] Q.P. Tran, J.S. Fang, and T.S. Chin, Optical properties and boron-doping induced conduction-type change in SnO2 thin films, Journal of Electronic Materials 45 (2016) 349–356.
    連結:
  57. [60] C.W. Ou, Dhananjay, Z.Y. Ho, Y.C. Chuang, S.S. Cheng, M.C. Wu, K.C. Ho, and C.W. Chu, Anomalous p–channel amorphous oxide transistors based on tin oxide and their complementary circuits, Applied Physics Letters 92 (2008) 122113–122113-3.
    連結:
  58. [61] Q.P. Tran, J.S. Fang, A.Y. Lo, and T.S. Chin, p-Type highly conductive and transparent NdF3-doped tin oxide films prepared by dip coating, Thin Solid Films (2016).
    連結:
  59. [63] G. Ingarao, R.D. Lorenzo, and F. Micari, Sustainability issues in sheet metal forming processes: an overview, Journal of Cleaner Production 19 (2011) 337–347.
    連結:
  60. [64] T.E. Norgate, S. Jahanshahi, and W.J. Rankin, Assessing the environmental impact of metal production processes, Journal of Cleaner Production 15 (2007) 838–848.
    連結:
  61. [66] J.W. McAuley, Global sustainability and key needs in future automotive design, Environmental Science & Technology 37 (2003) 5414–5416.
    連結:
  62. [67] G.S. Cole and A.M. Sherman, Light weight materials for automotive applications, Materials Characterization 35 (1995) 3–9.
    連結:
  63. [68] K. Funatani, Emerging technology in surface modification of light metals, Surface and Coatings Technology 133-134 (2000) 264–272.
    連結:
  64. [69] B.L. Jiang and Y.M. Wang, Plasma electrolytic oxidation treatment of aluminium and titanium alloys, H. Dong (Ed.) ed.: Woodhead Publishing, 2010.
    連結:
  65. [70] G. Sundararajan and L.R. Krishna, Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology, Surface and Coatings Technology 167 (2003) 269–277.
    連結:
  66. [71] A.V. Timoshenko and Y.V. Magurova, Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes, Surface and Coatings Technology 1999 (2005) 135–140.
    連結:
  67. [72] C.Z. Wang, D. Zhang, and Y.F. Jiang, Growth process and wear resistance for ceramic coatings formed on Al–Cu–Mg alloy by micro-arc oxidation, Applied Surface Science 253 (2006) 674–678.
    連結:
  68. [73] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, and J.Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials 25 (2004) 2867–2875.
    連結:
  69. [74] P. Soares, C.A.H. Laurindo, R.D. Torres, N.K. Kuromoto, O. Peitl, and E.D. Zanotto, Effect of a bioactive glass-ceramic on the apatite nucleation on titanium surface modified by micro-arc oxidation, Surface and Coatings Technology 206 (2012) 4601–4605.
    連結:
  70. [75] X. Lin, X. Wang, L.L. Tan, P. Wan, X.M. Yu, Q. Li, and K. Yang, Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy, Ceramics International 40 (2014) 10043–10051.
    連結:
  71. [76] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology 20 (2005) S35–S44.
    連結:
  72. [77] H. Hosono, Recent progress in transparent oxide semiconductors: Materials and device application, Thin Solid Films 515 (2007) 6000–6014.
    連結:
  73. [78] K. Bädeker, Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen, Annalen der Physik 327 (1907) 749–766.
    連結:
  74. [79] G. Rupprecht, Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten, Zeitschrift für Physik 139 (154) 504–517.
    連結:
  75. [81] P. Drude, Zur elektronentheorie der metalle, Annalen der Physik 306 (1900) 566–613.
    連結:
  76. [82] T.J. Coutts, D.L. Young, and T.A. Gessert, Modeling, characterization, and properties of transparent conducting oxides, in Handbook of Transparent Conductors, D.S. Ginley ed.: Springer US, 2010.
    連結:
  77. [83] L. Castañeda, Present status of the development and application of transparent conductors oxide thin solid films, Materials Sciences and Applications 2 (2011) 1233–1242.
    連結:
  78. [84] Ç. Kiliç and A. Zunger, Origins of coexistence of conductivity and transparency in SnO2, Physical Review Letters 88 (2002) 95501–95501-4.
    連結:
  79. [85] C.V.d. Walle, Hydrogen as a cause of doping in zinc oxide, Physical Review Letters 85 (2000) 1012–1015.
    連結:
  80. [86] F. Simonis, M.v.d. Leij, and C.J. Hoogendoorn, Physics of doped tin dioxide films for spectral-selective surfaces, Solar Energy Materials 1 (1979) 221–231.
    連結:
  81. [87] I. Hamberg and C.G. Granqvist, Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows, Journal of Applied Physics 60 (1986) R123–R159.
    連結:
  82. [88] J. Hu and R.G. Gordon, Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition, Journal of Applied Physics 71 (1992) 880–890.
    連結:
  83. [89] I. Hamberg, A. Hjortsberg, and C.G. Granqvist, High quality transparent heat reflectors of reactively evaporated indium tin oxide, Applied Physics Letters 40 (1982) 362–364.
    連結:
  84. [90] D.B. Fraser and H.D. Cook, Highly conductive, transparent films of sputtered In2−xSnxO3−y, Journal of The Electrochemical Society 119 (1972) 1368-1374.
    連結:
  85. [91] G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics 47 (1976) 4086–4089.
    連結:
  86. [93] B.J. Ingram, G.B. Gonzalez, D.R. Kammler, M.I. Bertoni, and T.O. Mason, Chemical and structural factors governing transparent conductivity in oxides, Journal of Electroceramics 13 (2004) 167–175.
    連結:
  87. [94] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, and C.H. Bhosale, Effect of concentration of SnCl4 on sprayed fluorine doped tin oxide thin films, Journal of Alloys and Compounds 455 (2008) 440–446.
    連結:
  88. [95] P.P. Edwards, A. Porch, M.O. Jones, D.V. Morgan, and R.M. Perks, Basic materials physics of transparent conducting oxides, Dalton Transactions 19 (2004) 2995–3002.
    連結:
  89. [96] A.A. Yadav, E.U. Masumdar, A.V. Moholkar, K.Y. Rajpure, and C.H. Bhosale, Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films, Physica B 404 (2009) 1874–1877.
    連結:
  90. [97] C.H. Han, S.D. Han, and S.P. Khatkar, Enhancement of H2-sensing properties of F-doped SnO2 sensor by surface modification with SiO2, Sensors 6 (2006) 492–502.
    連結:
  91. [98] C.H. Han, D.U. Hong, J. Gwak, and S.D. Han, A planar catalytic combustion sensor using nano-crystalline F-doped SnO2 as a supporting material for hydrogen detection, Korean Journal of Chemical Engineering 24 (2007) 927–931.
    連結:
  92. [99] Z. Tachan, S. Rühle, and A. Zaban, Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing, Solar Energy Materials & Solar Cells 94 (2010) 317–322.
    連結:
  93. [100] I.Y.Y. Bu, Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells, Ceramics International 40 (2014) 417–422.
    連結:
  94. [101] S.F. Tseng, W.T. Hsiao, K.C. Huang, and D. Chiang, The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates, Applied Surface Science 257 (2011) 8813– 8819.
    連結:
  95. [102] A.G. Macedo, E.A.d. Vasconcelos, R. Valaski, F. Muchenski, E.F.d.S. Jr., A.F.d. Silva, and L.S. Roman, Enhanced lifetime in porous silicon light-emitting diodes with fluorine doped tin oxide electrodes, Thin Solid Films 517 (2008) 870–873.
    連結:
  96. [103] M.R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, and A. Kahoul, Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium, Materials Chemistry and Physics 122 (2010) 449–453.
    連結:
  97. [104] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions, MRS Bulletin 25 (2000) 28–36.
    連結:
  98. [105] H.A.A. Jawhari, A review of recent advances in transparent p-type Cu2O-based thin film transistors, Materials Science in Semiconductor Processing 40 (2015) 241–252.
    連結:
  99. [106] H. Sato, T. Minami, S.Takata, and T.Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films 236 (1993) 27–31.
    連結:
  100. [107] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature 389 (1997) 939–942.
    連結:
  101. [108] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano, Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition, Journal of Applied Physics 89 (2001) 1790–1793.
    連結:
  102. [109] M. Snure and A. Tiwari, A p-type transparent oxide CuBO2, Applied Physics Letters 91 (2007) 92123–92123-3.
    連結:
  103. [110] D.H. Xiong, Z. Xu, X.W. Zeng, W.J. Zhang, W. Chen, X.B. Xu, M.K. Wang, and Y.B. Cheng, Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells, Journal of Materials Chemistry 22 (2012) 24760–24768.
    連結:
  104. [111] K.A. Vanaja, R.S. Ajmsha, A.S. Asha, and M.K. Jayaraj, P-type electrical conduction in a-AgGaO2 delafossite thin films, Applied Physics Letters 88 (2006) 212103–212103-3.
    連結:
  105. [112] M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, and M. Shokooh-Saremi, Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique: Thermoelectric and p-type conductivity properties, Solid State Sciences 11 (2009) 233–239.
    連結:
  106. [113] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science 300 (2003) 1269–1272.
    連結:
  107. [114] P. Cao, D.X. Zhao, D.Z. Shen, J.Y. Zhang, Z.Z. Zhang, and Y. Bai, Cu+-codoping inducing the room-temperature magnetism and p-type conductivity of ZnCoO diluted magnetic semiconductor, Applied Surface Science 255 (2009) 3639–3641.
    連結:
  108. [115] K.N. Hui, K.S. Hui, L. Li, Y.R. Cho, and J. Singh, Low resistivity p-type Zn1-xAlxO:Cu2O composite transparent conducting oxide thin film fabricated by sol–gel method, Materials Research Bulletin 48 (2013) 96–100.
    連結:
  109. [116] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, and H. Hosono, Transparent p-type semiconductor: LaCuOS layered oxysulfide, Applied Physics Letters 77 (2000) 2701–2703.
    連結:
  110. [117] H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, Preparation of transparent p-type (La1-xSrxO)CuS thin films by r.f. sputtering technique, Thin Solid Films 411 (2002) 125–128.
    連結:
  111. [118] A.N. Banerjee and K.K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films, Progress in Crystal Growth and Characterization of Materials 50 (2005) 52–105.
    連結:
  112. [119] Y.J. Oh, J.I. Mun, and J.H. Kim, Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis, Surface and Coatings Technology 204 (2009) 141–148.
    連結:
  113. [120] Y.L. Wang, Z.H. Jiang, and Z.P. Yao, Effects of Na2WO4 and Na2SiO3 additives in electrolytes on microstructure and properties of PEO coatings on Q235 carbon steel, Journal of Alloys and Compounds 481 (2009) 725–729.
    連結:
  114. [121] H.T. Gao, M. Zhang, X. Yang, P. Huang, and K. Xua, Effect of Na2SiO3 solution concentration of micro-arc oxidationprocess on lap-shear strength of adhesive-bonded magnesium alloys, Applied Surface Science 314 (2014) 447–452.
    連結:
  115. [122] M.M.S.A. Bosta, K.J. Mab, and H.H. Chien, The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy, Infrared Physics and Technology 60 (2013) 323–334.
    連結:
  116. [123] D.J. Shen, J. Zou, L.L. Wu, F.F. Liu, G.L. Li, J.R. Cai, D.L. He, H.J. Ma, and G.R. Jiang, Effect of high temperature oxidation prefab film on formation of micro-arc oxidation coatings on 6061 aluminum alloy, Applied Surface Science 265 (2013) 431–437.
    連結:
  117. [124] M.M.S.A. Bosta and K.J. Ma, Influence of electrolyte temperature on properties and infrared emissivity of MAO ceramic coating on 6061 aluminum alloy, Infrared Physics and Technology 67 (2014) 63–72.
    連結:
  118. [125] I. Han, J.H. Choi, B.H. Zhao, H.K. Baik, and I.S. Lee, Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform, Surface and Coatings Technology 201 (2007) 5533–5536.
    連結:
  119. [126] K. Wang, B.H. Koo, C.G.Lee, Y.J. Kim, S.H. Lee, and E. Byon, Effects of hybrid voltages on oxide formation on 6061 Al-alloys during plasma electrolytic oxidation, Chinese Journal of Aeronautics 22 (2009) 564–568.
    連結:
  120. [127] R.H.U. Khan, A. Yerokhin, X. Li, H. Dong, and A. Matthews, Surface characterization of DC plasma electrolytic oxidation treated 6082 aluminium alloy: effect of current density and electrolyte concentration, Surface and Coating Technology 205 (2010) 1679–1688.
    連結:
  121. [128] G.L. Yang, X.Y. Lü, Y.Z. Bai, H.F. Cui, and Z.S. Jin, The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating, Journal of Alloys and Compounds 345 (2002) 196–200.
    連結:
  122. [129] V. Raj and M.M. Ali, Formation of ceramic alumina nanocomposite coatings on aluminium for enhanced corrosion resistance, Journal of Materials Processing Technology 209 (2009) 5341–5352.
    連結:
  123. [143] V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, and S. Rohani, Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surface and Coatings Technology 226 (2013) 100–107.
    連結:
  124. [144] M. Javidi and H. Fadaee, Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation on microstructure and wear behavior, Applied Surface Science 286 (2013) 212– 219.
    連結:
  125. [145] D.J. Shen, G.L. Li, C.H. Guo, J. Zou, J.R. Cai, D.L. He, H.J. Ma, and F.F. Liu, Microstructure and corrosion behavior of micro-arc oxidation coatingon 6061 aluminum alloy pre-treated by high-temperature oxidation, Applied Surface Science 287 (2013) 451–456.
    連結:
  126. [146] K.M. Lee, Y.G. Ko, and D.H. Shin, Incorporation of carbon nanotubes into micro-coatings film formed on aluminum alloy via plasma electrolytic oxidation, Materials Letters 65 (2011) 2269–2273.
    連結:
  127. [147] D.J. Shen, J.R. Cai, G.L. Li, D.L. He, L.LWu, H.J. Ma, Y.Y. Xia, H. Chen, and Y.Q. Yang, Effect of ultrasonic on microstructure and growth characteristics of micro-arc oxidation ceramic coatings on 6061 aluminum alloy, Vacuum 99 (2014) 143–148.
    連結:
  128. [148] E. Arslan, Y. Totik, E.E. Demirci, Y. Vangolu, A. Alsaran, and I. Efeoglu, High temperature wear behavior of aluminum oxide layers produced by AC micro arc oxidation, Surface and Coatings Technology 204 (2009) 829–833.
    連結:
  129. [149] B. Zaid, N. Maddache, D. Saidi, N. Souami, N. Bacha, and A.S. Ahmed, Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution, Journal of Alloys and Compounds 629 (2015) 188–196.
    連結:
  130. [150] H.P. Duan, C.W. Yan, and F.H. Wang, Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution, Electrochimica Acta 52 (2007) 5002–5009.
    連結:
  131. [151] Q. Wen, F.H. Cao, Y.Y. Shi, Z. Zhang, and J.Q. Zhang, The effect of phosphate on MAO of AZ91D magnesium using AC power source, Materials and Corrosion 59 (2008) 819–824.
    連結:
  132. [152] S. Stojadinović, R. Vasilić, J. Radić-Perić, and M. Perić, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surface and Coatings Technology 273 (2015) 1–11.
    連結:
  133. [153] Y.H. Gao, A. Yerokhin, and A. Matthews, Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings, Applied Surface Science 316 (2014) 558–567.
    連結:
  134. [154] X.J. Tao, S.J. Li, C.Y. Zheng, J. Fu, Z. Guo, Y.L. Hao, R. Yang, and Z.X. Guo, Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation, Materials Science and Engineering C 29 (2009) 1923–1934.
    連結:
  135. [155] Y.T. Sul, C.B. Johansson, Y.S. Jeong, and T. Albrektsson, The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Medical Engineering & Physics 23 (2001) 329–346.
    連結:
  136. [156] R.O. Hussein, D.O. Northwood, J.F. Su, and X. Nie, A study of the interactive effects of hybrid current modes on the tribological properties of a PEO (plasma electrolytic oxidation) coated AM60B Mg-alloy, Surface and Coatings Technology 215 (2013) 421–430.
    連結:
  137. [157] L. Wang, W. Fua, and L. Chen, Evolution of active species and discharge sparks in Na2SiO3 electrolyte during PEO process, Journal of Alloys and Compounds 509 (2011) 7652–7656.
    連結:
  138. [158] R.H.U. Khan, A.L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current, Surface and Coatings Technology 200 (2005) 1580–1586.
    連結:
  139. [159] L. Wang and X. Nie, Silicon effects on formation of EPO oxide coatings on aluminum alloys, Thin Solid Films 494 (2006) 211–218.
    連結:
  140. [160] X.H. Liu, L.Q. Zhu, H.C. Liu, and W.P. Li, Investigation of MAO coating growth mechanism on aluminum alloyby two-step oxidation method, Applied Surface Science 29 (2014) 12–17.
    連結:
  141. [161] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, and A. Matthews, Abrasive wearycorrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis, Surface and Coatings Technology 149 (2002) 245–251.
    連結:
  142. [162] S.K. Yazıcı, F. Muhaffel, and M. Baydogan, Effect of incorporating carbon nanotubes into electrolyte on surfacemorphology of micro arc oxidized Cp-Ti, Applied Surface Science 318 (2014) 10–14.
    連結:
  143. [163] F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, and A. Ryder, Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Transactions of the Institute of Metal Finishing 87 (2009) 122–135.
    連結:
  144. [164] K. Wang, B.H. Koo, C.G.Lee, Y.J. Kim, S.H. Lee, and E. Byon, Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation, Transactions of Nonferrous Metals Society of China 19 (2009) 866–870.
    連結:
  145. [165] Q.P. Tran, Y.C. Kuo, J.K. Sun, J.L. He, and T.S. Chin, High quality oxide-layers on Al-alloy by micro-arc oxidation using hybrid voltages, Surface and Coatings Technology (2016).
    連結:
  146. [167] O. Khaselev and J. Yahalom, The anodic behaviour of binary Mg-Al alloys in KOH aluminate solutions, Corrosion Science 40 (1998) 1149–1160.
    連結:
  147. [168] N.P. Wasekar, A. Jyothirmayi, and G. Sundararajan, Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 aluminum alloy, International Journal of Fatigue 33 (2011) 1268–1276.
    連結:
  148. [169] F.Y. Jin, P.K. Chu, H.H. Tong, and J. Zhao, Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation, Applied Surface Science 253 (2006) 863–868.
    連結:
  149. [170] M. Kaseem, M.P. Kamil, J.H. Kwon, and Y.G. Ko, Effect of sodium benzoate on corrosion behavior of 6061 Al alloy processed by plasma electrolytic oxidation, Surface and Coatings Technology 283 (2015) 268–273.
    連結:
  150. [171] P.B. Srinivasan, J. Liang, R.G. Balajeee, C. Blawert, M. Störmer, and W. Dietzel, Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy, Applied Surface Science 256 (2010) 3928–3935.
    連結:
  151. [172] H. Li, Y.Z. Sun, and J. Zhang, Effect of ZrO2 particle on the performance of micro-arc oxidation coatings on Ti6Al4V, Applied Surface Science 342 (2015) 183–190.
    連結:
  152. [173] L.R. Krishna, K.R.C. Somaraju, and G. Sundararajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, Surface and Coatings Technology 163–164 (2003) 484–490.
    連結:
  153. [174] C.S. Dunleavy, J.A. Curran, and T.W. Clyne, Self-similar scaling of discharge events through PEO coatings on aluminium, Surface and Coatings Technology 206 (2011) 1051–1061.
    連結:
  154. [175] H. Habazaki, S. Tsunekawa, E. Tsuji, and T. Nakayama, Formation and characterization of wear-resistant PEO coatings formed on β-titanium alloy at different electrolyte temperatures, Applied Surface Science 259 (2012) 711–718.
    連結:
  155. [176] W. Xue, Z. Deng, Y. Lai, and R. Chen, Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy, Journal of the American Ceramic Society 81 (1998) 1365–1368.
    連結:
  156. [177] J. Liang, L. Hu, and J. Hao, Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes, Applied Surface Science 253 (2007) 4490–4496.
    連結:
  157. [178] Y.M. Wang, T.Q. Lei, B.L. Jiang, and L.X. Guo, Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution, Applied Surface Science 233 (2004) 258–267.
    連結:
  158. [179] J.A. Curran and T.W. Clyne, Porosity in plasma electrolytic oxide coatings, Acta Materialia 54 (2006) 1985–1993.
    連結:
  159. [180] C. Blawert, W. Dietzel, E. Ghali, and G. Song, Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Advanced Engineering Materials 8 (2006) 511–533.
    連結:
  160. [181] J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes, Electrochimica Acta 54 (2009) 3842–3850.
    連結:
  161. [182] D.Y. Hwang, Y.M. Kim, D.-Y. Park, B. Yoo, and D.H. Shin, Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation, Electrochimica Acta 54 (2009) 5479–5485.
    連結:
  162. [183] A. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, and A. Matthews, Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process, Surface and Coatings Technology 199 (2005) 150–157.
    連結:
  163. [184] R. Hussein, X. Nie, D. Northwood, A. Yerokhin, and A. Matthews, Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process, Journal of Physics D: Applied Physics 43 (2010) 105203–105203-13.
    連結:
  164. [185] W. Xue, Q. Jin, Q. Zhu, M. Hua, and Y. Ma, Anti-corrosion microarc oxidation coatings on SiC p/AZ31 magnesium matrix composite, Journal of Alloys and Compounds 482 (2009) 208–212.
    連結:
  165. [186] R. Hussein, X. Nie, and D. Northwood, Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure, Surface and Coatings Technology 205 (2010) 1659–1667.
    連結:
  166. [187] X. Shi-Gang, S. Li-Xin, Z. Rong-Gen, and H. Xing-Fang, Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation, Surface and Coatings Technology 199 (2005) 184–188.
    連結:
  167. [188] J. Tian, Z. Luo, S. Qi, and X. Sun, Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy, Surface and Coatings Technology 154 (2002) 1–7.
    連結:
  168. [189] A. Yerokhin, A. Voevodin, V. Lyubimov, J. Zabinski, and M. Donley, Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys, Surface and Coatings Technology 110 (1998) 140–146.
    連結:
  169. [190] X. Nie, A. Leyland, H. Song, A. Yerokhin, S. Dowey, and A. Matthews, Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys, Surface and Coatings Technology 116 (1999) 1055–1060.
    連結:
  170. [191] X. Nie, L. Wang, E. Konca, and A. Alpas, Tribological behaviour of oxide/graphite composite coatings deposited using electrolytic plasma process, Surface and Coatings Technology 188 (2004) 207–213.
    連結:
  171. [192] N. Barati, E.I. Meletis, F. Golestani Fard, A. Yerokhin, S. Rastegari, and M.A. Faghihi-Sani, Al2O3–ZrO2 nanostructured coatings using DC plasma electrolytic oxidation to improve tribological properties of Al substrates, Applied Surface Science 356 (2015) 927–934.
    連結:
  172. [193] H.-X. Guo, M. Ying, J.-s. Wang, Y.-S. Wang, H.-R. Dong, and H. Yuan, Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations, Transactions of Nonferrous Metals Society of China 22 (2012) 1786–1793.
    連結:
  173. [194] J. Bajat, R. Vasilic, S. Stojadinovic, and V. Miškovic-Stankovic, Corrosion stability of oxide coatings formed by plasma electrolytic oxidation of aluminum: optimization of process time, Corrosion 69 (2013) 693–702.
    連結:
  174. [195] R. Hussein, D. Northwood, and X. Nie, The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys, Surface and Coatings Technology 237 (2013) 357–368.
    連結:
  175. [196] A. Venugopal, R. Panda, S. Manwatkar, K. Sreekumar, L.R. Krishna, and G. Sundararajan, Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution, Transactions of Nonferrous Metals Society of China 22 (2012) 700–710.
    連結:
  176. [197] D. Krupa, J. Baszkiewicz, J. Zdunek, J.W. Sobczak, W. Lisowski, J. Smolik, and Z. Słomka, Effect of plasma electrolytic oxidation in the solutions containing Ca, P, Si, Na on the properties of titanium, Journal of Biomedical Materials Research Part B: Applied Biomaterials 100 (2012) 2156–2166.
    連結:
  177. [198] S. Sarbishei, M.A. Faghihi Sani, and M.R. Mohammadi, Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension, Vacuum 108 (2014) 12–19.
    連結:
  178. [199] A. Ghasemi, V. Raja, C. Blawert, W. Dietzel, and K. Kainer, The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings, Surface and Coatings Technology 204 (2010) 1469–1478.
    連結:
  179. [200] Y. Liu, J. Xu, Y. Gao, Y. Yuan, and C. Gao, Influences of additive on the formation and corrosion resistance of micro-arc oxidation ceramic coatings on aluminum alloy, Physics Procedia 32 (2012) 107–112.
    連結:
  180. [201] Y. Yang and L. Zhou, Improving corrosion resistance of friction stir welding joint of 7075 aluminum alloy by micro-arc oxidation, Journal of Materials Science & Technology 30 (2014) 1251–1254.
    連結:
  181. [202] V. Dehnavi, D.W. Shoesmith, B.L. Luan, M. Yari, X.Y. Liu, and S. Rohani, Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy–The effect of the PEO process stage, Materials Chemistry and Physics 161 (2015) 49–58.
    連結:
  182. [203] B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed.: Addison-Wesley, Reading, MA, 1978.
    連結:
  183. [204] J. Goldstein, Scanning electron microscopy and X-Ray microanalysis: Springer, 2012.
    連結:
  184. [205] A.L. Fahrenbruch and R.H. Bube, Fundamentals of solar cell, photovoltaic solar energy conversion. Department of Materials Science and Engineering, Stanford University, Stanford, Califorlia: Elsevier, 2012.
    連結:
  185. [206] J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, Physica Status Solidi B 15 (1966) 627–637.
    連結:
  186. [207] F.M. Smits, Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal 34 (1958) 711–718.
    連結:
  187. [209] L.J.v.d. Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Technical report, Philips research reports 13 (1958) 1–9.
    連結:
  188. [210] D.K. Schroder, Semiconductor material and device characterization. New York: Wiley Interscience Publication, 1998.
    連結:
  189. [211] T. Seebeck, Magnetische polarisation der metalle und erze durch temperatur-differenz, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin (1823) 265–373.
    連結:
  190. [212] A.E.-. 10e2, Standard test method for knoop and Vickers hardness of materials.
    連結:
  191. [213] M. Stern and A.L. Geary, Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves, Journal of The Electrochemical Society 104 (1957) 56–63.
    連結:
  192. [215] H. Li, Y. Sun, and J. Zhang, Effect of ZrO2 particle on the performance of micro-arc oxidation coatings on Ti6Al4V, Applied Surface Science 342 (2015) 183–190.
    連結:
  193. [216] B. Zhang, Y. Tian, J.X. Zhang, and W. Cai, The structural and electrical studies on the Boron-doped SnO2 films deposited by spray pyrolysis, Vacuum 85 (2011) 986–989.
    連結:
  194. [220] A. Jain, K. Joseph, S. Anthonysamy, and G.S. Gupta, Kinetics of oxidation of boron powder, Thermochimica Acta 514 (2011) 67–73.
    連結:
  195. [222] R.M. Summit and J.A. Borrelli, The ultraviolet absorption edge of stannic oxide (SnO2), Journal of Physics and Chemistry of Solids 25 (1964) 1465–1469.
    連結:
  196. [223] A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, and K.Y. Rajpure, Structural and optoelectronic properties of sprayed Sb:SnO2 thin films: effects of substrate temperature and nozzle-to-substrate distance, Journal of Semiconductor 32 (2011) 102001–102001-9.
    連結:
  197. [224] M.M.B. Mohagheghi and M.S. Saremi, The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique, Physica B 405 (2010) 4205–4210.
    連結:
  198. [226] Z. Ji, Z. He, Y. Song, K. Liu, and Z. Ye, Fabrication and characterization of indium-doped p-type SnO2 thin films, Journal of Crystal Growth 259 (2003) 282–285.
    連結:
  199. [227] S. Hwang, Y.Y. Kim, J.H. Lee, D.K. Seo, J.Y. Lee, and H.K. Cho, Irregular electrical conduction types in tin oxide thin films induced by nanoscale phase separation, Journal of the American Ceramic Society 95 (2012) 324–327.
    連結:
  200. [228] S. Shanthi, C. Subramanian, and P. Ramasamy, Growth and characterization of antimony doped tin oxide thin films, Journal of Crystal Growth 197 (1999) 858–864.
    連結:
  201. [229] C. Agashe, M.G. Takwale, B.R. Marathe, and V.G. Bhide, Structural properties of SnO2:F films deposited by spray pyrolysis technique, Thin Solid Films 17 (1988) 99–117.
    連結:
  202. [230] G.N. Advani, A.G. Jordan, C.H.P. Lupis, and R.L. Longini, A thermodynamic analysis of the deposition of SnO2 thin films from the vapor phase, Thin Solid Films 62 (1979) 361–368.
    連結:
  203. [231] S. Kim, H. Yoon, D. Kim, S.O. Kim, and J.Y. Leem, Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method, Optical Materials 35 (2013) 2418–2424.
    連結:
  204. [232] T. Jäger, B. Bissig, M. Döbeli, A.N. Tiwari, and Y.E. Romanyuk, Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing, Thin Solid Films 553 (2014) 21–25.
    連結:
  205. [233] H. Kim, R.C.Y. Auyeung, and A. Piqué, F-doped SnO2 thin films grown on flexible substrates at low temperatures by pulsed laser deposition, Thin Solid Films 520 (2011).
    連結:
  206. [234] W. Spence, The UV absorption edge of tin oxide thin films, Journal of Applied Physics 38 (1967) 3767–3770.
    連結:
  207. [235] K.L. Chopra, S. Major, and D.K. Pandya, Transparent conductors - A status review, Thin Solid Films 102 (1983) 1–46.
    連結:
  208. [236] E. Burstein, Anomalous optical absorption limit in InSb, Physical Review 93 (1954) 632–633.
    連結:
  209. [237] M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science 79 (2005) 47–154.
    連結:
  210. [238] B. Thangaraju, Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor, Thin Solid Films 402 (2002) 71–78.
    連結:
  211. [239] C.C. Lin, M.C. Chiang, and Y.W. Chen, Temperature dependence of fluorine-doped tin oxide films produced by ultrasonic spray pyrolysis, Thin Solid Films 518 (2009) 1241–1244.
    連結:
  212. [240] M.F. Chen, K.M. Lin, and Y.S. Ho, Effects of laser-induced recovery process on conductive property of SnO2:F thin films, Materials Science and Engineering B 176 (2011) 127–131.
    連結:
  213. [241] J. Yang, W. Liu, L. Dong, Y. Li, C. Li, and H. Zhao, Studies on the structural and electrical properties of F-doped SnO2 film prepared by APCVD, Applied Surface Science 257 (2011) 10499–10502.
    連結:
  214. [242] G.C. Morris and A.E. McElnea, Fluorine doped tin oxide films from spray pyrolysis of stannous fluoride solutions, Applied Surface Science 92 (1996) 167–170.
    連結:
  215. [243] Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing, Langmuir 29 (2013) 13836−13842.
    連結:
  216. [244] K.J. Patel, M.S. Desai, and C.J. Panchal, Properties of RF magnetron sputtered indium tin oxide thin films on externally unheated glass substrate, Journal of Materials Science: Materials in Electronics 22 (2011) 959–965.
    連結:
  217. [245] D. Xiong, H. Wang, W. Zhang, X. Zeng, H. Chang, X. Zhao, W. Chen, and Y.B. Cheng, Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell, Journal of Alloys and Compounds 642 (2015).
    連結:
  218. [246] E. Benouis, M. Benhaliliba, Z. Mouffak, A. Avila-Garcia, A. Tiburcio-Silver, M.O. Lopez, R.R. Trujillo, and Y.S. Ocak, The low resistive and transparent Al-doped SnO2 films: p-type conductivity, nanostructures and photoluminescence, Journal of Alloys and Compounds 603 (2014) 213–223.
    連結:
  219. [247] Q.P. Tran, J.S. Fang, and T.S. Chin, Properties of fluorine-doped SnO2 thin films by a green sol–gel method, Materials Science in Semiconductor Processing 40 (2015) 664–669.
    連結:
  220. [248] F. Arefi-Khonsari, N. Bauduin, and F. Donsanti, Deposition of transparent conductive tin oxide thin films doped with fluorine by PACVD, Thin Solid Films 427 (2003) 208–214.
    連結:
  221. [249] J. Mazloom and F.E. Ghodsi, Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2:Co thin films prepared by sol–gel spin coating technique, Materials Research Bulletin 48 (2013) 1468–1476.
    連結:
  222. [250] F.A. Kröger, The chemistry of imperfect crystals, 2nd ed. North-Holland Publ. Co. Amsterdam, 1974.
    連結:
  223. [251] V. Vasu and A. Subrahmanyam, Electrical and optical properties of sprayed SnO2 films: Dependence on the oxiding agent in the starting material, Thin Solid Films 193 (1990) 973–980.
    連結:
  224. [252] S. Chacko, N. Sajeeth Philip, and V. Vaidyan, Effect of substrate temperature on structural, optical and electrical properties of spray pyrolytically grown nanocrystalline SnO2 thin films, ‎Physica status solidi (a) 204 (2007) 3305–3315.
    連結:
  225. [253] R. Khandelwal, A.P. Singh, A. Kapoor, S. Grigorescu, P. Miglietta, N.E. Stankova, and A. Perrone, Effects of deposition temperature on the structural and morphological properties of SnO2 films fabricated by pulsed laser deposition, Optics & Laser Technology 41 (2009) 89–93.
    連結:
  226. [254] K.H. Yoon and J.S. Song, Effects of solvents and carrier gases on the electrical and optical properties of pyrosol-deposited SnO2-based films, Thin Solid Films 224 (1993) 203-208.
    連結:
  227. [255] T.B. Wei, F.Y. Yan, and J. Tian, Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy, Journal of Alloys and Compounds 389 (2005) 169–176.
    連結:
  228. [256] H.H. Wu, Z.S. Jin, B.Y. Long, F.R. Yu, and X.Y. Lu, Characterization of microarc oxidation process on aluminum alloy, Chinese Physics Letters 20 (2003) 1815–1818.
    連結:
  229. [257] K.M. Lee, Y.G. Ko, and D.H. Shin, Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties, Current Applied Physics 11 (2011) S55–S59.
    連結:
  230. [258] N. Godja, N. Kiss, C. Löcker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J.Wendrinsky, A. Merstallinger, and G.E. Nauer, Preparation and characterization of spark-anodized Al-alloys: physical, chemical and tribological properties, Tribological International 43 (2010) 1253–1261.
    連結:
  231. [259] C.S. Dunleavy, I.O. Golosnoy, J.A. Curran, and T.W. Clyne, Characterisation of dis-charge events during plasma electrolytic oxidation, Surface and Coating Technology 203 (2009) 3410–3419.
    連結:
  232. [260] S. Stojadinovic, R. Vasilic, I. Belca, M. Petkovic, B. Kasalica, Z. Nedic, and L. Zekovic, Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate, Corrosion Science 52 (2010) 3258–3265.
    連結:
  233. [37] F.d. Moure-Flores, A. Guillén-Cervantes, K.E. Nieto-Zepeda, J.G. Quiñones-Galván, A. Hernández-Hernández, M.d.l.L. Olvera, and M. Meléndez-Lira, SnO2:F thin films deposited by RF magnetron sputtering: effect of the SnF2 amount in the target on the physical properties, Revista Mexicana de Física 59 (2013) 335–338.
  234. [44] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma electrolysis for surface engineering, Surface and Coatings Technology 122 (1999) 73–93.
  235. [48] J. Martin, A.Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec, and T. Belmonte, Effects of electrical parameters on plasma electrolytic oxidation of aluminium, Surface & Coatings Technology 211 (2013) 70–76.
  236. [62] H. Hosono, D.C. Paine, and D.S. Ginley, Handbook of Transparent Conductors: Springer, 2000.
  237. [65] Available: https://www3.epa.gov/climatechange/ghgemissions/global.html
  238. [80] D.J. Griffits, Introduction to Electrodynamics. Prentice – Hall of India, New Delhi, 1994.
  239. [92] P.A. Iles and S.I. Soclof, I. E. E. Photovoltaic Specialists Conference, (1976) 978.
  240. [130] N. Sluginov, Electric discharges in water, J. Russ. Phys. Chem. Soc. 12 (1980) 193.
  241. [131] A. Günterschultze and H. Betz, Electrolytkondensatoren. Krayn, Berlin, 1937.
  242. [132] J. Frasch, PROCESS FOR PROTECTING ARTICLES MADE OF LIGHT METALS, US Patent 2 364 964, 1944.
  243. [133] H.H. Kellogg, Anode effect in aqueous electrolysis, Journal of The Electrochemical Society 97 (1950) 133–142.
  244. [134] W. McNeill and G.F. Nordblom, METHODS OF MAKING CADMIUM NIOBATE, US Patent 2 854 390, 1958.
  245. [135] W. McNeill and L.L. Gruss, ANODIC SPARK REACTION PROCESSES AND ARTICLES, US Patent 3 293 158, 1966.
  246. [136] W. Lautenschlager, S. Pahlke, and G. Tolg, ALUMINIUM OBJECT WITH ANODIC OXIDE SURFACE, US Patent 3 862 892, 1975.
  247. [137] R.J. Hradcovsky and S.H. Bayles, COATED VALVE METAL ARTICLE FORMED BY SPARK ANODIZING, US Patent 3 956 080, 1976.
  248. [138] O. Kozak, ANTI-CORROSIVE COATING ON MAGNESIUM AND ITS ALLOYS, US Patent 4 184 926, 1980.
  249. [139] B. Antonov, S. Panayotov, and O.V. Lyutakov, APPARATUS FOR THE SPARK DEPOSITION OF METALS, US Patent 4 226 697, 1980.
  250. [140] W. Kobayashi, AQUEOUS ANODIZING SOLUTION AND PROCESS FOR COLORING ARTICLE OF MAGNESIUM OR MAGNESIUM-BASE ALLOY, US Patent 4 551 211, 1985.
  251. [141] O. Kozak, METHOD OF COATING ARTICLES OF MAGNESIUM AND AN ELECTOLYTIC BATH THEREFOR, US Patent 4 620 904, 1986.
  252. [142] P. Kurze, W. Krysmann, W. Knoefler, and H. Grar, CERAMIC-COATED METAL IMPLANTS, US Patent 4 846 837, 1989.
  253. [166] B.H. Long, H.H. Wu, B.Y. Long, J.B. Wang, N.D. Wang, X.Y. Lu, Z.S. Jin, and Y.Z. Bai, Characteristics of electric parameters in aluminium alloy MAO coating process, Journal of Physics D: Applied Physics 38 (2005) 3491–3496.
  254. [208] R. Green, Hall effect measurements for semiconductor and other material characterization: Keithley Instruments, Inc., 2011.
  255. [214] Getting Started with Electrochemical Corrosion Measurement. Available: http://www.gamry.com/application-notes/corrosion-coatings/basics-of-electrochemical-corrosion-measurements/
  256. [217] JCPDS Card No. 41–1445 for Tetragonal SnO2, (2007).
  257. [218] JCPDS Card No. 16-0737 for triclinic Sn3O4, (2007).
  258. [219] JCPDS Card No. 06-0634 for hexagonal B2O3, (2007).
  259. [221] P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D.K. Avasthi, On the properties of indium doped ZnO thin films, Semiconductor Science and Technology 20 (2005) 120–126.
  260. [225] D.R. Lide and ed., CRC Handbook of Chemistry and Physics, 90th ed. Boca Raton, Florida: CRC Press., 2009.
  261. [261] A. Fischer and K. Bobzin, Friction Wear and Wear Protection. Wiley VCH, Germany, 2011.
  262. [262] P.L. Menezes, S.P. Ingole, M. Nosonovsky, S.V. Kailas, and M.R. Lovell, Tribology for scientists and engineers: Springer, 2014.