Title

新式熱壓製程增進表面修飾鈍化層/電漿子雙觸媒半導體金屬氧化物於光能轉換之研究

Translated Titles

Study of a Novel Hot-Press Process for the Enhancement of Solar Energy Conversion in Passivation/Plasmonic Metal Oxide Cocatalyst System

DOI

10.6341/fcu.M0303475

Authors

楊昆霖

Key Words

分解水 ; 熱壓製程 ; 表面電漿子效應 ; 產氫 ; Water Splitting ; Hot Press Process ; Surface Plasmonic Resonance ; H2 Production

PublicationName

逢甲大學材料科學與工程學系學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

洪緯璿

Content Language

繁體中文

Chinese Abstract

在此研究中,吾人將使用一簡單熱壓處理去增進雙觸媒半導體金屬氧化物光電極的光催化分解水反應效率,實驗結果顯示經過熱壓處理的光催化分解水光電流可得到約1.5倍之提升。而熱壓處理前後之材料特性差異將經由SEM、TEM、XPS、Raman Spectroscopy來對材料做特徵分析,而光致發光光譜、電化學量測進行分析以探討分解水光電流之提升機制。而熱壓對此光催化系統的貢獻可以歸因於膜厚降低使得薄膜的緻密度增加,進而使得電子在薄膜之間的電子遷移率提升;以及隨著緻密度增加使材料的剛性增強,進而使光電極穩定性提升。本實驗也會將上述光電極經由濺鍍法披覆金奈米粒子後,並利用電化學分析系統證實表面電漿子共振效應使其分解水之光電流將再進一步得到提升。 最後,利用原子層沉積法披覆一層10 nm之Al2O3之鈍化層,利用鈍化層去除能帶架構中的表面狀態(surface states)以及催化光催化分解水之反應動力學來再次提升光催化分解水之產氫量。

English Abstract

In this study, we will use a simple hot pressing to enhance the efficiency of photocatalytic water splitting of metal oxide cocatalysts, the experimental results have been demonstrated a 1.5-fold enhanced photocurrent after the hot-pressing process. The difference of the material properties will identify by SEM, TEM, XPS, Raman Spectroscopy. The mechanism of the hot pressing will discuss by the PL and Electrochemistry measurement. The contribution on photocatalytic system of the hot pressing can be attributed to the reducing of the film thickness so that the density of the film will increase, thus making the electron mobility promote and rigidity enhance. The photoelectrodes coated gold nanoparticles by sputtering, and utilize the electrochemistry measurement to prove the Surface Plasmonic Resonance enhancing the photocurrent of the water splitting. Finally, we fabricate a 10 nm Al2O3 passivation layers by atomic layer deposition. Utilize the passivation to remove the surface states in the band structure and to improve photocatalytic water splitting kinetics.

Topic Category 理學院 > 材料科學與工程學系
工程學 > 工程學總論
Reference
  1. 1. Yang, Y., et al., High-temperature solar cell for concentrated solar-power hybrid systems. Applied Physics Letters, 2013. 103(8).
    連結:
  2. 2. Zhang, Y., et al., Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application. Applied Physics Letters, 2013. 102(16): p. 163906.
    連結:
  3. 3. Bojadgieva, K., et al., Aspects of current geothermal application in Bulgaria. Journal of Renewable and Sustainable Energy, 2013. 5(4).
    連結:
  4. 4. Self, S.J., B.V. Reddy, and M.A. Rosen, Geothermal heat pump systems: Status review and comparison with other heating options. Applied Energy, 2013. 101: p. 341-348.
    連結:
  5. 5. Pena, R., J.C. Clare, and G.M. Asher, Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings - Electric Power Applications, 1996. 143(3): p. 231-241.
    連結:
  6. 6. Wang, L. and C.N. Li, Dynamic Stability Analysis of a Tidal Power Generation System Connected to an Onshore Distribution System. Ieee Transactions on Energy Conversion, 2011. 26(4): p. 1191-1197.
    連結:
  7. 7. Laihanen, M., A. Karhunen, and T. Ranta, Possibilities and challenges in regional forest biomass utilization. Journal of Renewable and Sustainable Energy, 2013. 5(3).
    連結:
  8. 8. Lei, T., et al., A biomass briquetting fuel machine and its large-scale operation system. Journal of Renewable and Sustainable Energy, 2013. 5(1): p. 013107.
    連結:
  9. 9. Naqavi, A., et al., Limit of light coupling strength in solar cells. Applied Physics Letters, 2013. 102(13): p. 131113.
    連結:
  10. 10. Walter, M.G., et al., Solar Water Splitting Cells. Chemical Reviews, 2010. 110(11): p. 6446-6473.
    連結:
  11. 11. Hou, W.B., et al., Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. Acs Catalysis, 2011. 1(8): p. 929-936.
    連結:
  12. 12. Huong Le, T.H., et al., Optical near-field induced visible response photoelectrochemical water splitting on nanorod TiO2. Applied Physics Letters, 2011. 99(21): p. 213105.
    連結:
  13. 13. Zhao, H., et al., Synthesis and characterization of TiO2/Fe2O3 core–shell nanocomposition film and their photoelectrochemical property. Applied Surface Science, 2011. 257(21): p. 8778-8783.
    連結:
  14. 14. Yu, J., L. Qi, and M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. The Journal of Physical Chemistry C, 2010. 114(30): p. 13118-13125.
    連結:
  15. 15. Guo, W., et al., Effect of N Dopant Amount on the Performance of Dye-Sensitized Solar Cells Based on N-Doped TiO2 Electrodes. The Journal of Physical Chemistry C, 2011. 115(43): p. 21494-21499.
    連結:
  16. 16. Chen, L., et al., Synthesis of Iron-Doped Titanium Oxide Nanoadsorbent and Its Adsorption Characteristics for Fluoride in Drinking Water. Industrial & Engineering Chemistry Research, 2012. 51(40): p. 13150-13156.
    連結:
  17. 17. Kumaresan, L., et al., Synthesis, Characterization, and Photocatalytic Activity of Sr2+ Doped TiO2 Nanoplates. Industrial & Engineering Chemistry Research, 2010. 49(4): p. 1480-1485.
    連結:
  18. 18. Kapoor, M.P., S. Inagaki, and H. Yoshida, Novel Zirconium−Titanium Phosphates Mesoporous Materials for Hydrogen Production by Photoinduced Water Splitting. The Journal of Physical Chemistry B, 2005. 109(19): p. 9231-9238.
    連結:
  19. 19. Kulmas, M., et al., Composite Nanostructures of TiO2 and ZnO for Water Splitting Application: Atomic Layer Deposition Growth and Density Functional Theory Investigation. Advanced Functional Materials, 2016: p. n/a-n/a.
    連結:
  20. 20. Ravishankar , T.N., et al., Ionic Liquid Assisted Hydrothermal Syntheses of TiO2/CuO Nano-Composites for Enhanced Photocatalytic Hydrogen Production from Water. ChemistrySelect, 2016. 1(10): p. 2199-2206.
    連結:
  21. 21. Momeni, M.M. and Y. Ghayeb, Photoinduced deposition of gold nanoparticles on TiO2–WO3 nanotube films as efficient photoanodes for solar water splitting. Applied Physics A, 2016. 122(6): p. 1-10.
    連結:
  22. 22. Le Formal, F., et al., Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chemical Science, 2011. 2(4): p. 737-743.
    連結:
  23. 23. Segev, G., et al., High Solar Flux Concentration Water Splitting with Hematite (α-Fe2O3) Photoanodes. Advanced Energy Materials, 2016. 6(1): p. n/a-n/a.
    連結:
  24. 24. Carraro, G., et al., Plasma-Assisted Fabrication of Fe2O3Co3O4 Nanomaterials as Anodes for Photoelectrochemical Water Splitting. Plasma Processes and Polymers, 2016. 13(1): p. 191-200.
    連結:
  25. 25. Dotan, H., et al., Probing the photoelectrochemical properties of hematite ([small alpha]-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy & Environmental Science, 2011. 4(3): p. 958-964.
    連結:
  26. 26. Hisatomi, T., et al., Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer. Advanced Materials, 2012. 24(20): p. 2699-2702.
    連結:
  27. 27. Mulmudi, H.K., et al., Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties. Electrochemistry Communications, 2011. 13(9): p. 951-954.
    連結:
  28. 28. Liao, P., M.C. Toroker, and E.A. Carter, Electron Transport in Pure and Doped Hematite. Nano Letters, 2011. 11(4): p. 1775-1781.
    連結:
  29. 30. Sun, L., D. Liu, and Z. Wang, Functional Gold Nanoparticle−Peptide Complexes as Cell-Targeting Agents. Langmuir, 2008. 24(18): p. 10293-10297.
    連結:
  30. 31. Hou, W., et al., Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light. Journal of Catalysis, 2011. 277(2): p. 149-153.
    連結:
  31. 32. Hung, W.H., et al., Plasmon Resonant Enhancement of Carbon Monoxide Catalysis. Nano Letters, 2010. 10(4): p. 1314-1318.
    連結:
  32. 33. Lee, Y.S., et al., Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu2ZnSn(S,Se)4 Thin-Film Solar Cells. Advanced Energy Materials, 2016. 6(12): p. n/a-n/a.
    連結:
  33. 34. Xie, J., J. Chen, and C.M. Li, Self-assembling reduced graphene quantum dots on hematite photoanode for passivating surface states toward significantly improved water splitting. International Journal of Hydrogen Energy.
    連結:
  34. 35. Kenney, M.J., et al., High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science, 2013. 342(6160): p. 836-840.
    連結:
  35. 36. Lin, Y., et al., Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production. Nano Letters, 2013. 13(11): p. 5615-5618.
    連結:
  36. 37. Paracchino, A., et al., Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater, 2011. 10(6): p. 456-461.
    連結:
  37. 38. Lawaczeck, R., M. Menzel, and H. Pietsch, Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Applied Organometallic Chemistry, 2004. 18(10): p. 506-513.
    連結:
  38. 39. Taboada, E., et al., Supercritical-Fluid-Assisted One-Pot Synthesis of Biocompatible Core(γ-Fe2O3)/Shell(SiO2) Nanoparticles as High Relaxivity T2-Contrast Agents for Magnetic Resonance Imaging. Advanced Functional Materials, 2009. 19(14): p. 2319-2324.
    連結:
  39. 40. Hu, Y.-S., et al., Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting. Chemistry of Materials, 2008. 20(12): p. 3803-3805.
    連結:
  40. 41. Zhong, D.K., et al., Solar Water Oxidation by Composite Catalyst/α-Fe2O3 Photoanodes. Journal of the American Chemical Society, 2009. 131(17): p. 6086-6087.
    連結:
  41. 42. Somekawa, S., et al., Wet-type Fe2O3 solar cells based on Fe2O3 films prepared by laser ablation: Drastic temperature effect. Electrochemistry Communications, 2009. 11(11): p. 2150-2152.
    連結:
  42. 43. Xianghong, L., et al., Porous α-Fe 2 O 3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology, 2010. 21(9): p. 095501.
    連結:
  43. 44. Wang, B., et al., Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties. Journal of the American Chemical Society, 2011. 133(43): p. 17146-17148.
    連結:
  44. 45. Momeni, M.M. and Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 2015. 45(6): p. 557-566.
    連結:
  45. 46. Li, X., et al., Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. ACS Applied Materials & Interfaces, 2015. 7(31): p. 16960-16966.
    連結:
  46. 47. Cho, I.S., et al., Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting. Nano Letters, 2014. 14(1): p. 24-31.
    連結:
  47. 48. Jain, P.K., et al., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B, 2006. 110(14): p. 7238-7248.
    連結:
  48. 49. Daniel, M.-C. and D. Astruc, Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 2004. 104(1): p. 293-346.
    連結:
  49. 50. Donner, J.S., et al., Imaging of Plasmonic Heating in a Living Organism. ACS Nano, 2013. 7(10): p. 8666-8672.
    連結:
  50. 51. Wustholz, K.L., et al., Structure−Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2010. 132(31): p. 10903-10910.
    連結:
  51. 52. Li, J.F., et al., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010. 464(7287): p. 392-395.
    連結:
  52. 53. Sivapalan, S.T., et al., Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought. ACS Nano, 2013. 7(3): p. 2099-105.
    連結:
  53. 54. Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 2011. 10(12): p. 911-921.
    連結:
  54. 55. Thomann, I., et al., Plasmon Enhanced Solar-to-Fuel Energy Conversion. Nano Letters, 2011. 11(8): p. 3440-3446.
    連結:
  55. 56. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nat Mater, 2010. 9(3): p. 205-213.
    連結:
  56. 57. Jitputti, J., et al., Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. Journal of Solid State Chemistry, 2007. 180(5): p. 1743-1749.
    連結:
  57. 58. Han, Q., et al., Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Research, 2015. 8(5): p. 1718-1728.
    連結:
  58. 59. Hartmann, P., et al., Mesoporous TiO2: Comparison of Classical Sol−Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction. ACS Nano, 2010. 4(6): p. 3147-3154.
    連結:
  59. 60. Ishihara, H., et al., Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction. Energy, 2008. 33(12): p. 1788-1793.
    連結:
  60. 61. Liu, R., et al., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy & Environmental Science, 2014. 7(8): p. 2504-2517.
    連結:
  61. 62. Badia-Bou, L., et al., Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. The Journal of Physical Chemistry C, 2013. 117(8): p. 3826-3833.
    連結:
  62. 63. Abdi, F.F. and R. van de Krol, Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes. The Journal of Physical Chemistry C, 2012. 116(17): p. 9398-9404.
    連結:
  63. 64. Riha, S.C., et al., Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite. ACS Nano, 2013. 7(3): p. 2396-2405.
    連結:
  64. 65. Klahr, B., et al., Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with “Co–Pi”-Coated Hematite Electrodes. Journal of the American Chemical Society, 2012. 134(40): p. 16693-16700.
    連結:
  65. 文獻回顧
  66. 29. Xuming, Z., et al., Plasmonic photocatalysis. Reports on Progress in Physics, 2013. 76(4): p. 046401.