Title

含三吡啶基團之線性和超分枝狀共軛聚芴高分子合成及其化學感測器探討

Translated Titles

Synthesis and Characterization of Linear and Hyperbranched Conjugated Polyfluorenes Containing Terpyridine Moieties and Their Applications in Fluorescent Chemosensors

Authors

吳奐

Key Words

聚芴 ; 三吡 ; 啶 ; 螢光化學感測器 ; 螢光 ; polyfluorenes ; terpyridine ; fluorescent chemosensor ; fluorescence

PublicationName

元智大學化學工程與材料科學學系學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

楊博智

Content Language

繁體中文

Chinese Abstract

在本研究中,主要為利用Suzuki耦合聚合法合成一系列含有不同三苯胺末端取代基團,分別為氫(PFH)、醛(PFCHO)和乙烯苯環三吡啶基團(PFTPY)的共軛聚芴高分子(polyfluorenes)。我們探討分子結構對共軛高分子光電性質的影響和研究三吡啶基團對於螢光化學感測器的感應特性。我們亦合成超分枝狀共軛高分子(HPFTPY)與線性高分子(PFTPY)比較。PF、PFH、PFCHO、PFTPY及HPFTPY的重量平均分子量分別為2.18 × 104、0.79 × 104、1.94 × 104、0.51 × 104及0.49 × 104,熱重量損失分別為414.7、411.9、393.3、407.0 及406.7 oC,顯示這些高分子皆有良好的熱穩定性。與PF比較,從螢光光譜發現,含有三吡啶基團的高分子PFTPY及HPFTPY皆有紅位移的現象發生,故有電荷轉移的產生。金屬離子辨識的方面,發現PFTPY及HPFTPY對於Fe3+、Ni2+、Mn2+及Zn2+皆會有螢光萃熄的現象,特別是針對Ni2+幾乎發生完全螢光萃熄,以Ni2+濃度滴定實驗,可發現PFTPY(Ksv = 1.46 × 104)和HPFTPY(Ksv = 1.57 × 104)對Ni2+的靈敏度差異不大,證明含有三吡啶基團的高分子PFTPY及HPFTPY可以當作離子辨識基團的電子接受體,應用於螢光化學感測器上。電化學方面,PF、PFH、PFCHO、PFTPY及HPFTPY,HOMO值分別為–5.65 eV、–5.34 eV、–5.42 eV及–5.22 eV及–5.10 eV,LUMO值分別為–3.34 eV、–3.20 eV、–3.20 eV、–3.44 eV及–3.46 eV,顯示導入三苯胺基團有效提升HOMO能階,增加電洞注入的能力。

English Abstract

A series of triphenylamine-based linear conjugated polyfluorenes, differing only in the terminal proton (PFH), aldehyde (PFCHO), and 4’-(4-vinylphenyl)-2,2’:6’,2’’-terpyridine (PFTPY) pendant groups, were synthesized through Suzuki coupling polymerization. The chemosensory, photophysical, and electrochemical properties of PFTPY were investigated and compared with those of hyperbranched polymer (HPFTPY) to elucidate the effect of hyperbranched structure. The weight-average molecular weight of PF, PFH, PFCHO, PFTPY, and HPFTPY, determined by gel permeation chromatography using polystyrene as standard, were 2.18×104, 0.79×104, 1.94×104, 0.51×104, and 0.49×104, respectively. The thermal decomposition temperature (Td) of PF, PFH, PFCHO, PFTPY and HPFTPY were 414.7, 411.9, 393.3, 407.0, 406.7 oC, respectively, indicating they all showed good thermal stability. Fluorescence spectral variations in the presence of different metal ions or concentrations were used to elucidate the selectivity and sensitivity of conjugated polymers, respectively. PFTPY and HPFTPY with pendant terpyridyl unit showed higher sensitivities toward Fe3+, Ni2+, Zn2+, and Mn2+ as compared with other metal ions. Especially, nearly complete fluorescence quenching of PFTPY and HPFTPY when Ni2+ was added.

Topic Category 工程學院 > 化學工程與材料科學學系
工程學 > 工程學總論
工程學 > 化學工業
Reference
  1. 11.C. H. Chou, C. F. Shu, Macromolecules, 35, 9673 (2002).
    連結:
  2. 12.K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su. G. H. Lee, S. M. Peng, J. Am. Chem. Soc. Commun., 123, 11576 (2002).
    連結:
  3. 17.J. P. Desvergne, A. W. Czarnik, “Chemosensors for Ion and Molecule Recognition”, NATO ASI Ser. 492, Kluwer: Dordrecht (1997).
    連結:
  4. 19.L. Zhu, M. Yang, C. Zhong, C. Yang, J. Qin, Polymey, 50, 5422-5426 (2009).
    連結:
  5. 21.J. R. Lakowicz, “Principles of fluorescence spectroscopy”, 2nd ed, Plenum Publishers, New York, p.13 (1999).
    連結:
  6. 22.B. Valeur, I. Leray, Coord. Chem. Rev., 205, 3 (2000).
    連結:
  7. 24.T. M. Swager, Acc. Chem. Res., 31, 201 (1998).
    連結:
  8. 25.B. Wang, M. R. Wasielewski, J. Am. Chem. Soc., 119, 12 (1997).
    連結:
  9. 27.M. Leclec, J. Polym. Sci. Part A:Polym. Chem., 39, 2867 (2001).
    連結:
  10. 29.U. Scherf, E. J. W. List, Adv Mater., 14, 477 (2002).
    連結:
  11. 30.P. Abhishek, Y. Z. Kulkarm, A. Samson, Macromolecules, 38, 1553 (2005).
    連結:
  12. 31.D. Neher, Macromol. Rapid Commun, 22, 1365 (2001).
    連結:
  13. 40.L. R. Tsai, Y. Chen, Macromolecules, 40, 2984~2992 (2007).
    連結:
  14. 43.D. A. Tomalia, J. M. J. Frechet., J. Polym. Sci., Part A:Polym. Chem., 40, 2719 (2002).
    連結:
  15. 44.J. M. J. Frechet, Science, 263, 1710 (1994).
    連結:
  16. 50.A. D. Schluter, J. P. Rabe, Angew. Chem. Int. Ed., 39, 864 (2000).
    連結:
  17. 51.S. M. Grayson, J. M. J. Frechet, Chem. Rev., 101, 3819 (2001).
    連結:
  18. 55.J. M. J Frechet, Science, 263, 1710 (1994).
    連結:
  19. 57.D. Astruc, F. Chardac, Chem. Rev., 101, 2991 (2001).
    連結:
  20. 58.H. C. Choi, W. Kim, D. Wang, H. Dai, J. Phys. Chem. B., 106, 12361 (2002).
    連結:
  21. 59.F. Zeng, S. C. Zimmerman, Chem. Rev., 97, 1681 (1997).
    連結:
  22. 60.B. L. Frankamp, A. K. Boal, V. M. Rotello, J. Am. Chem. Soc., 124, 15146 (2002).
    連結:
  23. 62.J. Alvarez, L. Sun, R. M. Crooks, Chem. Mater., 14, 3995 (2002).
    連結:
  24. 64.M. Seiler, Fluid Phase Equilibria., 241, 155 (2006).
    連結:
  25. 65.L.R Tasi, Y. Chen, Macromolecules, 40, 2984-2992 (2007).
    連結:
  26. 68.S.W. Hwang, Y. Chen, Macromolecule, 34, 2981 (2001).
    連結:
  27. 1.D. T. McQuade, A. E. Pullen, T. M. Swager, J. Chem. Rev., 100, 2537 (2000).
  28. 2.B. Liu, W.-L. Yu, J. Pei, S.-Y. Liu, Y.-H. Lai, W. Huang, Macromolecules, 34, 7932 (2001).
  29. 3.M. Kimura, T. Horai, K. Hanabusa, H. Shirai, Adv. Mater., 10, 459 (1998).
  30. 4.V. Banjoko, Y. Xu, E. Mintz, Y. Pang, Polymer., 50, 2001-2009 (2009).
  31. 5.J. C. W. Chien.,”Polyacetylene:chemistry, Ohysics, and Material Science”, Academic Press, Orlando, (1984).
  32. 6.A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern. Plastics. Int., 33 (1991).
  33. 7.J. H. Burroughes, D. D. C. Bardley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Bruns, A. B. Holmes, Nature, 347, 539 (1990).
  34. 8.J. Gmeiner, S. Karg, M. Meier, W. Rieβ, P. Strohriegl, M. Schwoerer, Acta. Polym., 44, 201 (1993).
  35. 9.G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 357, 477 (1992).
  36. 10.N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holms, Nature, 365, 628 (1993)
  37. 13.D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. R. Carter, J. Am. Chem. Soc., 123, 6965 (2001).
  38. 14.J. M. Yu, Y. Chen, Polymer, 51, 4484-4492 (2010).
  39. 15.B. VAleur, “Topics in fluorescence spectroscopy:Probe Design and Chemical Sensing”, J. R. Ed. Plenum:New York, Chap. 2 (1994).
  40. 16.A. P. De Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademcher, T. E. Rice, Chem. Rev., 97, 1515 (1997).
  41. 18.K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken,B. Winter, Angew. Chem. Int. Ed., 30, 516 (1991).
  42. 20.Linna Zhu, Chuiuo Yang, Cheng Zhong, Li Xu, Jingui Qin, Polymer, 49, 3716-3721 (2008).
  43. 23.H. B. Layrent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, M. H. Riffaud, J. Am. Chem. Soc., 108, 315 (1986).
  44. 26.T. Virgili, D. G. Lidzey, D. D. C. Bradley, Adv. Mater., 12, 58 (2000).
  45. 28.M. Ariu, D. G. Lidzey, M. Lavrentiev, D. D. C. Bradley, M. Jandke, P. Strhriegl, Synth. Met., 116, 217 (2001).
  46. 32.U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Mullen, H. Bassler, Chem. Phy. Lett., 240, 373 (1995).
  47. 33.V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller, D. C. Miller, Macromolecules, 32, 361 (1999).
  48. 34.E. J. List, R. Guentner, P. Scanducci de Freitas, U. Scherf, Adv. Mater., 14, 374 (2002).
  49. 35.Y. Lin, Z. K. Chen, T. L. Ye, Y. F. Dai, D. G. Ma, Z. Ma, Q. D. Liu, Y. Chen, Polymer, 51, 1270-1278 (2010).
  50. 36.T. Mitwa, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Muller, K. Meerholz, A. Yasuda, D. Neher, Adv Mater., 13, 565 (2001).
  51. 37.A. A. Lamola, N. J. Turro, “Energy Transfer and Organic Photochemistry”, Wiley & Sons, New York, p17 (1969).
  52. 38.S. Setayesh, A. C. Grimmsdale, T. Wil, V. Enkelmann, K. Mullen, F. Meghdadi, E. J. W. List, G. J. Leising, J. Am. Chem. Soc., 123, 946 (2001).
  53. 39.J. P. Chen, G. Klaerner, J. I. Lee, V. Y. Lee, D. Marliewicz, R. D. Miller, J. C. Scott, Synth. Met., 107, 129 (1999).
  54. 41.S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Mullen, F. Meghdadi, F. List, G. Leising, J. Am. Chem. Soc., 113, 946 (2001).
  55. 42.D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. R. Carter, J. Am. Chem. Soc., 123, 6965 (2001).
  56. 45.W. B. Turnbull, S. A. Kalovidouris, J. F. Stoddart, Chem. Eur. J., 8, 2988 (2002).
  57. 46.L. J. Twyman, A. S. King, I. K. Martin, Chem. Soc. Rev., 31, 69 (2002).
  58. 47.B. Romahnoli, W. Hayes, J. Mater. Chem., 12, 767 (2002).
  59. 48.V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero, S. Serroni, Coord. Chem. Rev., 219, 545 (2001).
  60. 49.F. Vogtle, S. Gestermann, R. Hesse, H. Schwierz, B. Windisch, Prog. Polym. Sci., 25, 987 (2000).
  61. 52.A. W. Bosman, H. M. Janssen, E. W. Meijer, Chem. Rev., 99. 1665 (1999).
  62. 53.D. A. Tomalia, A. M. Naylor, W. A. Goddard, Angew. Chem., 102, 119 (1990).
  63. 54.G. R. Newkome,C. N. Moorefield, F. Vogtle, “Dendrimers and Dendrons:Concepts, Synthesis and Applications”, VCH:Weinheim, Germany (2001).
  64. 56.G. Dantlgraber, U. Baumeister, S. Diele, H. Kresse, B. Luhmann, H. Lang, C. Tschierske, J. Am. Chem. Soc., 124, 14852 (2002).
  65. 61.Y. Ma, S. V. Kolotuchin, S. C. Zimmerman, J. Am. Chem. Soc., 124, 13757 (2002).
  66. 63.J. L. Casson, H. L. Wang, J. B. Robert, A. N. Parikh, J. M. Robinson, M. S. Johal, J. Phys. Chem. B., 106, 1697 (2002).
  67. 66.C. Reichardt, “Solvents and Slovent Effect in Organic Chemistry”, Verlag Chemie:New York, Chapter 6 (1988).
  68. 67.Y. Zhang, C. B. Murphy, W. E. Jones, Macromolecules, 35, 630 (2002).
  69. 69.Y. Xin, G. A. Wen, W. J. Zeng, L. Zhao, Z. R. Zhu, Q. L. Fan, J. C. Feng, L. H. Wnag, W. Wei, B. Peng, Y. Cao, W. Huang, Macromolecules, 38, 6755-6758 (2005).