透過您的圖書館登入
IP:3.133.144.217
  • 學位論文

微小型陣列波導光柵的設計與研究

Design and Study of A Small 32 X 32 Arrayed Waveguide Grating

指導教授 : 黃建彰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


光纖通訊分波多工系統(Wavelength Division Multiplexing; WDM)中,以陣列波導光柵(Arrayed Waveguide Gratings; AWG)型式的被動元件最具潛力與發展空間。本文提出利用絕緣層上矽晶(silicon-on-insulator; SOI) 的方式設計一微小型的32×32陣列波導光柵元件,我們利用陣列波導間之固定光程差產生空間及波長之分波效應並分析其陣列波導在自由傳佈區接面之波導間距對系統插入損失及串音之影響,並分析漸寬式波導在輸入及輸出埠與自由傳佈區接面對系統之影響。經由各相關影響參數的分析比較,我們找到最恰當的值來設計出一26mm X 35mm的SOI-AWG元件。

關鍵字

陣列波導光柵

並列摘要


Arrayed Waveguide Gratings (AWG) are the most potential devices in Wavelength Division Multiplexing (WDM) for optical fiber communication. In this thesis, we have designed a small 32×32 AWG device which combines arrayed waveguide grating based on silicon-on-insulator (SOI). we use the technique of the constant path length difference at adjacent waveguide of waveguide array to realize the spatial and spectrum division, and discuss the waveguide separation influence at the junction of free propagation region and arrayed waveguide. We also concern the insertion loss and crosstalk affected by tapered waveguide at the interface between the input/output waveguide and free propagation region. We have designed a 26mm X 35mm SOI-AWG device with optimum parameters after comparison with the relatedimportant parameters。

並列關鍵字

Arrayed Waveguide Grating

參考文獻


[2] C. G. M. Vreeburg, C. G. P. Herben, X. J. M. Leijtens, M. K. Smit, F. H. Groen, J. J. G. M. van der Tol, and P. Demeester, “A Low-Loss 16-Channel Polarization Dispersion-Compensated PHASAR Demultiplexer,” IEEE Photonics Technology Letters, vol. 10, no. 3, pp. 382-384, March 1998.
[3] M. Okawa, K. Maru, K. Ohira, S. Takasugi, H. Nounen, H. Uetsuka, “ Development of 128-channel 100GHz Arrayed Waveguide Grating with Pitch Conversion Waveguide,” Electron. Lett., vol. 27, pp. 1663-1665, 1991.
[4] S. Kamei, M. Ishii, T. Kitagawa, M. Itoh, and Y. Hibino, “64-channel very low crosstalk arrayed-waveguide grating multi/demultiplexer module using a cascade connection technique,” Journal of Lightwave Technology, vol. 22, Issue: 5, pp.1242 - 1262, May 2004.
[5] H. Ishii, M. Kohtoku, and Y. Yoshikuni, “Semiconductor Arrayed-Waveguide-Grating (AWG) and its Applications,” Journal of Lightwave Technology, vol. 12, no. 8, pp. 1394–1400, 1994.
[7] Y. Tachikawa, Y. Inoue, M. Ishii, and T. Nozawa, “Arrayed-Waveguide Grating Multiplexer with Loop-Back Optical Paths and Its Applications,” Journal of Lightwave Technology, vol. 14, no. 6, pp. 977-980, June 1996.

延伸閱讀