Title

利用機器學習理論探討肝癌病患術後2年內再復發風險之預測模式

Translated Titles

Machine Learning Analysis of prediction of post-operative 2-year Recurrence in Hepatocellular Carcinoma Patients

Authors

黃聰吟

Key Words

肝癌 ; 再復發 ; 機器學習理論 ; 類神經網路 ; 全域敏感度分析 ; HepatocellularCarcinoma ; Recurrence ; Machine Learning ; Artificial Neural Network(ANN) ; Global Sensitivity Analysis

PublicationName

高雄醫學大學醫務管理暨醫療資訊學系碩士在職專班學位論文

Volume or Term/Year and Month of Publication

2020年

Academic Degree Category

碩士

Advisor

許弘毅

Content Language

英文

Chinese Abstract

研究目的: 肝癌病人手術後常擔心是否會再復發之風險,因此本研究將利用類神經網路(Artificial Neural Network, ANN)、最近鄰居演算法(K-Nearest Neighbor, KNN)、支持向量機(Support Vector Machine, SVM)、單純貝氏分類器(Naïve Bayes Classifiers, NBC)與Cox迴歸分析(Cox Regression Analysis, COX)預測模式評估肝癌病患術後二年內再復發風險之準確性,並利用全域敏感度分析(Global Sensitivity Analysis)評估影響肝癌手術病患術後二年內再復發風險重要預測因子之權重。 研究方法: 本研究為前瞻性世代研究設計,以問卷方式蒐集病人之研究變項,經人體試驗委員會審核通過,本研究樣本以台灣南部某三家醫學中心於2017年11月至2018年12月接受肝手術之病人,評估病人術前焦慮(BAI)與憂鬱(BAI)之分佈狀況,並以病歷審查蒐集病人人口學特性、臨床特性、醫療機構特性及醫療照護品質特性。本研究利用敏感性(Sensitivity)、特異性(Specificity)、陽性預測值(PPV)、陰性預測值(NPV)、準確性(Accuracy)及曲線下面積(AUROC)作為上述四種預測模式其績效評估之指標,進而利用全域敏感度分析探討影響肝癌手術病患術後二年內再復發風險重要預測因子之權重。本研究以SPSS 22.0版與Statistica Academic 13.0版統計套裝軟體進行統計分析。 研究結果: 本研究利用類神經網路(Artificial Neural Network, ANN)、最近鄰居演算法(K-Nearest Neighbor, KNN)、支持向量機(Support Vector Machine, SVM)、單純貝氏分類器(Naïve Bayes Classifiers, NBC)與Cox迴歸分析(Cox Regression Analysis, COX)作為預測模型之建構,並使用15個變項,結果顯示肝癌病患術後兩年內再復發之預測,在敏感性(Sensitivity)部份類神經網路(Artificial Neural Network, ANN)、最近鄰居演算法(K-Nearest Neighbor, KNN)、支持向量機(Support Vector Machine, SVM)、單純貝氏分類器(Naïve Bayes Classifiers, NBC)與Cox迴歸分析(Cox Regression Analysis, COX)分別為93%、81%、82%、27%與66%;陰性預測值(NPV)分別為97%、87%、83%、60%與42%;準確性(Accuracy)分別為96%、76%、78%、63%與31%;在AU-ROC曲線分別為94%、77%、78%、60%與40%。整體而言類神經網路預測模式(Artificial Neural Network, ANN)優於最近鄰居演算法(K-Nearest Neighbor, KNN)、支持向量機(Support Vector Machine, SVM)、單純貝氏分類器(Naïve Bayes Classifiers, NBC)與Cox迴歸分析(Cox Regression Analysis, COX)預測模式。最後,經由全域敏感度分析發現腫瘤期別是病患術後兩年內再復發之最重要影響因子,其次為合併症指數(CCI)、30天內再入院及B型肝炎。 結論與建議: 研究結果顯示,肝癌手術病患其術後兩年內再復發風險之預測,建議應使用類神經網路預測模式進行估計。本研究亦發現,腫瘤期別是影響病患術後兩年內再復發之最重要預測因子,其次為合併症指數(CCI)、30天內再入院及B型肝炎,可用於提供照護癌症病患預計接受手術治療之醫護人員以及病患與家屬,於術後醫療恢復狀況之參考,進而提升醫療照護品質。

English Abstract

Purposes: Liver cancer patients often worry about the risk of relapse after surgery. In this study, Artificial Neural Network (ANN), K-Nearest Neighbor(KNN), Support Vector Machine (SVM), Naive Bayes Classifiers (NBC) and Cox Regression Analysis (COX) prediction models were used to predict the accuracy of the risk of relapse of liver cancer patients within two years after the surgeries. Global Sensitivity Analysis was also used to predict the weight of the important factors that affects the risk of relapse of liver cancer surgery patients within two years after surgery. Research Methods: This study is designed for a prospective generational study. Questionnaires were used to collect the research variables of patients. After the human trial committee reviewed and approved, the sample of this study was the patients undergoing liver surgery at a medical center in southern Taiwan from November 2017 to December 2018. Evaluate the distribution of patients’ preoperative anxiety (BAI) and depression (BAI), and collect patient demographic characteristics, clinical characteristics, medical institution characteristics and medical care quality characteristics through medical record review. This study used Sensitivity, Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Accuracy (Accuracy) and Area Under the Curve (AUROC) as the indicator of effectiveness evaluation of above four prediction modes. And then used global sensitivity analysis to discuss the weight of important predictors that affect the risk of relapse within two years after liver cancer surgery. In this study, statistical analysis was performed using SPSS version 22.0 and Statistica Academic version 13.0 statistical package software. Results: This study used Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naive Bayes Classifiers (NBC) and Cox Regression Analysis (COX) as the construction of the prediction model, and used 15 variables. The results showed that the prediction of relapse of liver cancer patients within two years after surgery, in the evaluation of Sensitivity, Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naive Bayes Classifiers (NBC) and COX Regression Analysis (COX) were 93%, 81%, 82%, 27% and 66% respectively; Negative predictive value (NPV) were 97%, 87%, 83%, 60 % And 42% respectively; Accuracy is 96%, 76%, 78%, 63% and 31% respectively; in the AU-ROC curve is 94%, 77%, 78%, 60% and 40%. In general, Artificial Neural Network (ANN) is superior to K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and simple Bayesian classifier (Naive) Bayes Classifiers (NBC) and Cox Regression Analysis (COX) prediction models. Finally, after the global sensitivity analysis, it is found that the tumor stage was the most important factor affecting the relapse of patients within two years after surgery, followed by the comorbidity index (CCI), readmission within 30 days, and hepatitis B. Conclusions and Suggestions: The results showed that the prediction of the risk of relapse within two years after surgery for patients with liver cancer surgery should be estimated by Artificial Neural Network (ANN) prediction model. This study also found that tumor stage is the most important predictor of relapse within two years after surgery, followed by the comorbidity index (CCI), readmission within 30 days and hepatitis B, which can be used to provide care of cancer diseases for medical staff, patients and their families who are expected to undergo surgical treatment. It can also be the reference of the postoperative medical recovery status to further improve the quality of medical care.

Topic Category 醫藥衛生 > 醫院管理與醫事行政
健康科學院 > 醫務管理暨醫療資訊學系碩士在職專班
社會科學 > 管理學
Reference
  1. 1. 劉雲夫 (2008)。應用最小均方演算法與天真貝氏分類器之分類式逆半色調技術
  2. 2. 李奇璇 (2019)。結合資料探勘及影像處理技術建立異常影像預測模式以增加放射科醫師報告醫療品質: 以肝癌患者為例。
  3. 3. 李佳怡(2008)。cox利用決策樹、邏輯斯回歸及類神經網路複合模型分析公開微陣列資料集乳癌復發基因及其效能之探索。
  4. 4. 高欣如(2009)。Cox比例風險假設之探討與擴充風險模型之應用。
  5. 5. 陳正美、徐建業(2010)。肝癌病患選擇治療方式的偏好評估與決策支援系統建置。台灣國際醫學資訊聯合研討會,國立台北護理健康大學。
  6. 6. 黃志富(2008)。肝病預防與治療專刊,高醫醫訊月刊第二十七卷第十期。
  7. 7. 吳定國(2013)。肝病預防與治療專刊,高醫醫訊月刊第三十二卷第九期。
  8. 8. 謝明彥(2013)。肝病預防與治療專刊,高醫醫訊月刊第三十二卷第九期。
  9. 9. 陳信成(2013)。肝病預防與治療專刊,高醫醫訊月刊第三十二卷第九期。
  10. 10. 衛福部(2019)。衛生福利部國民健康署,107年國人十大死因。
  11. 11. 經濟合作暨發展組織(2019)。2018全球癌症統計數據。
  12. 12. 肝病防治學術基金會(2018)。
  13. 1.Heimbach, J. K., Kulik, L. M., Finn, R. S., Sirlin, C. B., Abecassis, M. M., Roberts, L. R., ... & Marrero, J. A. (2018). AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology, 67(1), 358-380.
  14. 2.Chen, C. J., Yang, H. I., Iloeje, U. H., & Reveal‐HBV Study Group. (2009). Hepatitis B virus DNA levels and outcomes in chronic hepatitis B. Hepatology, 49(S5), S72-S84.
  15. 3.Yang, H. I., Yeh, S. H., Chen, P. J., Iloeje, U. H., Jen, C. L., Su, J., ... & Liaw, Y. F. (2008). Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. Journal of the National Cancer Institute, 100(16), 1134-1143.
  16. 4.Chen, D. S. (2007). Hepatocellular carcinoma in Taiwan. Hepatology Research, 37, S101-S105.
  17. 5.Yang, H. I., Lu, S. N., Liaw, Y. F., You, S. L., Sun, C. A., Wang, L. Y., ... & Chen, C. J. (2002). Hepatitis B e antigen and the risk of hepatocellular carcinoma. New England Journal of Medicine, 347(3), 168-174.
  18. 6.Davis, G. L., Alter, M. J., El–Serag, H., Poynard, T., & Jennings, L. W. (2010). Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology, 138(2), 513-521.
  19. 7.Calle, E. E., Rodriguez, C., Walker-Thurmond, K., & Thun, M. J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. New England Journal of Medicine, 348(17), 1625-1638.
  20. 8.Lee, M. H., Yang, H. I., Lu, S. N., Jen, C. L., Yeh, S. H., Liu, C. J., ... & Chen, C. J. (2010). Hepatitis C virus seromarkers and subsequent risk of hepatocellular carcinoma: long-term predictors from a community-based cohort study. J Clin Oncol, 28(30), 4587-4593.
  21. 9.Donato, F., Tagger, A., Gelatti, U., Parrinello, G., Boffetta, P., Albertini, A., ... & Porru, S. (2002). Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. American journal of epidemiology, 155(4), 323-331.
  22. 10.Tanaka, Y., Kurbanov, F., Mano, S., Orito, E., Vargas, V., Esteban, J. I., ... & Smuts, H. E. (2006). Molecular tracing of the global hepatitis C virus epidemic predicts regional patterns of hepatocellular carcinoma mortality. Gastroenterology, 130(3), 703-714.
  23. 11.El–Serag, H. B., Hampel, H., & Javadi, F. (2006). The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clinical Gastroenterology and Hepatology, 4(3), 369-380.
  24. 12.El-serag, H. B., Tran, T., & Everhart, J. E. (2004). Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology, 126(2), 460-468.
  25. 13.Neuschwander-Tetri, B. A., & Caldwell, S. H. (2003). Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology, 37(5), 1202-1219.
  26. 14.Bruix, J., Sherman, M., Llovet, J. M., Beaugrand, M., Lencioni, R., Burroughs, A. K., ... & Rodés, J. (2001). Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. Journal of hepatology, 35(3), 421-430.
  27. 15.Yamashita, Y., Mitsuzaki, K., Yi, T., Ogata, I., Nishiharu, T., Urata, J., & Takahashi, M. (1996). Small hepatocellular carcinoma in patients with chronic liver damage: prospective comparison of detection with dynamic MR imaging and helical CT of the whole liver. Radiology, 200(1), 79-84.
  28. 16.Bruix, J., & Sherman, M. (2005). Management of hepatocellular carcinoma. Hepatology, 42(5), 1208-1236.
  29. 17.Herrero, J. I., Sangro, B., Pardo, F., Quiroga, J., Iñarrairaegui, M., Rotellar, F., ... & Prieto, J. (2008). Liver transplantation in patients with hepatocellular carcinoma across Milan criteria. Liver Transplantation, 14(3), 272-278.
  30. 18.Altekruse, S. F., McGlynn, K. A., Dickie, L. A., & Kleiner, D. E. (2012). Hepatocellular carcinoma confirmation, treatment, and survival in surveillance, epidemiology, and end results registries, 1992‐2008. Hepatology, 55(2), 476-482.
  31. 19.Saraiya, N., Yopp, A. C., Rich, N. E., Odewole, M., Parikh, N. D., & Singal, A. G. (2018). Systematic review with meta‐analysis: recurrence of hepatocellular carcinoma following direct‐acting antiviral therapy. Alimentary pharmacology & therapeutics, 48(2), 127-137.
  32. 20.Chen, X., Chen, Y., Li, Q., Ma, D., Shen, B., & Peng, C. (2015). Radiofrequency ablation versus surgical resection for intrahepatic hepatocellular carcinoma recurrence: a meta-analysis. journal of surgical research, 195(1), 166-174.
  33. 21.Xing, H., Zhang, W. G., Cescon, M., Liang, L., Li, C., Wang, M. D., ... & Wang, H. (2019). Defining and predicting early recurrence after liver resection of hepatocellular carcinoma: a multi-institutional study. HPB.
  34. 22.Kim, J. M., Joh, J. W., Yi, N. J., Choi, G. S., Kim, K., Lee, K. W., & Suh, K. S. (2019). Predicting hepatocellular carcinoma recurrence beyond Milan criteria after liver resection for solitary hepatocellular carcinoma. Journal of Gastrointestinal Surgery, 1-9.
  35. 23.Li, M., Wang, Z., Cao, J., Han, B., Zou, H., Zang, Y., & Wu, L. (2019). Risk factors and prognosis of patients with recurrent hepatocellular carcinoma who undergo liver re-resections. European Journal of Surgical Oncology, 45(9), 1684-1690.
  36. 24.He, L. L., Liu, X. L., Zhang, S., Li, M. G., Wang, X. B., Jiang, Y. Y., & Yang, Z. Y. (2019). Independent risk factors for disease recurrence after surgery in patients with hepatitis B virus-related hepatocellular carcinoma≤ 3 cm in diameter. Gastroenterology Report, 7(4), 250-257.
  37. 25.Zhao, J., Li, W., & Mao, J. (2019). Early versus late recurrence of centrally located hepatocellular carcinoma after mesohepatectomy: A cohort study based on the STROBE guidelines. Medicine, 98(23).
  38. 26.Xu, X. F., Xing, H., Han, J., Li, Z. L., Lau, W. Y., Zhou, Y. H., ... & Li, C. (2019). Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA surgery, 154(3), 209-217.
  39. 27.Zhang, H., Han, J., Xing, H., Li, Z. L., Schwartz, M. E., Zhou, Y. H., ... & Wu, H. (2019). Sex difference in recurrence and survival after liver resection for hepatocellular carcinoma: A multicenter study. Surgery, 165(3), 516-524.
  40. 28.Cerban, R., Ester, C., Iacob, S., Grasu, M., Pâslaru, L., Dumitru, R., ... & Gheorghe, L. (2018). Predictive Factors of Tumor Recurrence and Survival in Patients with Hepatocellular Carcinoma treated with Transarterial Chemoembolization. Journal of Gastrointestinal & Liver Diseases, 27(4).
  41. 29.Joliat, G. R., Labgaa, I., Uldry, E., Demartines, N., & Halkic, N. (2018). Recurrence rate and overall survival of operated ruptured hepatocellular carcinomas. European journal of gastroenterology & hepatology, 30(7), 792-796.
  42. 30.Ji, G. W., Zhu, F. P., Xu, Q., Wang, K., Wu, M. Y., Tang, W. W., ... & Wang, X. H. (2019). Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine, 50, 156-165.
  43. 31.Abe, H., Aida, Y., Ishiguro, H., Yoshizawa, K., Miyazaki, T., Itagaki, M., ... & Aizawa, Y. (2013). Alcohol, postprandial plasma glucose, and prognosis of hepatocellular carcinoma. World journal of gastroenterology: WJG, 19(1), 78.
  44. 32.Ji, F., Liang, Y., Fu, S., Chen, D., Cai, X., Li, S., ... & Hua, Y. (2017). Prognostic value of combined preoperative prognostic nutritional index and body mass index in HCC after hepatectomy. HPB, 19(8), 695-705.
  45. 33.Baxt, W. G. (1995). Application of artificial neural networks to clinical medicine. The lancet, 346(8983), 1135-1138.
  46. 34.Berner, E. S., & La Lande, T. J. (2007). Overview of clinical decision support systems. In Clinical decision support systems (pp. 3-22). Springer, New York, NY.
  47. 35.Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
  48. 36.Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature neuroscience, 19(3), 404.
  49. 37.Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Dong, J. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122-1131.
  50. 38.Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., ... & Tada, T. (2018). Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 21(4), 653-660.
  51. 39.Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007;31:249-268.
  52. 40.D. E. Rex et al, "A meta-algorithm for brain extraction in MRI," Neuroimage, vol.23, (2), pp. 625-637, 2004.
  53. 41.Lin, Y., Wu, H. K., Wang, T. H., Chen, T. H., & Lin, Y. S. (2019). Trend and risk factors of recurrence and complications after arrhythmias radiofrequency catheter ablation: a nation-wide observational study in Taiwan. BMJ open, 9(5), e023487.
  54. 42.Liccardo, F., Baird, D. L., Pellino, G., Rasheed, S., Kontovounisios, C., & Tekkis, P. P. (2019). Predictors of short-term readmission after beyond total mesorectal excision for primary locally advanced and recurrent rectal cancer. Updates in surgery, 71(3), 477-484.
  55. 43.Aizer, A. A., Chen, M. H., McCarthy, E. P., Mendu, M. L., Koo, S., Wilhite, T. J., ... & Hu, J. C. (2013). Marital status and survival in patients with cancer. Journal of clinical oncology, 31(31), 3869.
  56. 44.Peng, L., Huang, W., Zhang, W., Xu, Y., Lu, F., Zhong, L., ... & Li, M. (2019). Psychometric properties of the short form of the Fear of Cancer Recurrence Inventory (FCRI) in Chinese breast cancer survivors. Frontiers in psychiatry, 10, 537.
  57. 45.Katapodi, M. C., Ellis, K. R., Schmidt, F., Nikolaidis, C., & Northouse, L. L. (2018). Predictors and interdependence of family support in a random sample of long‐term young breast cancer survivors and their biological relatives. Cancer medicine, 7(10), 4980-4992.
  58. 46.Neuman, H. B., Schumacher, J. R., Francescatti, A. B., Adesoye, T., Edge, S. B., Vanness, D. J., ... & Greenberg, C. C. (2018). Risk of synchronous distant recurrence at time of locoregional recurrence in patients with stage II and III breast cancer (AFT-01). Journal of Clinical Oncology, 36(10), 975.
  59. 47.Padthaisong, S., Thanee, M., Namwat, N., Phetcharaburanin, J., Klanrit, P., Khuntikeo, N., ... & Loilome, W. (2020). Overexpression of a panel of cancer stem cell markers enhances the predictive capability of the progression and recurrence in the early stage cholangiocarcinoma. Journal of translational medicine, 18(1), 64.
  60. 48.Tominaga, T., Nonaka, T., Takeshita, H., Kunizaki, M., Sumida, Y., Hidaka, S., ... & Nagayasu, T. (2018). The Charlson comorbidity index as an independent prognostic factor in older colorectal cancer patients. Indian Journal of Surgery, 80(1), 54-60.
  61. 49.Lin, Y. T., Lee, M. T. S., Huang, Y. C., Liu, C. K., Li, Y. T., & Chen, M. (2019). Prediction of recurrence-associated death from localized prostate cancer with a charlson comorbidity index–reinforced machine learning model. Open Medicine, 14(1), 593-606.
  62. 50.Xiao, H., Quan, H., Pan, S., Yin, B., Luo, W., Tang, M., ... & Tang, W. (2018). Incidence, causes and risk factors for 30-day readmission after radical gastrectomy for gastric cancer: a retrospective study of 2,023 patients. Scientific reports, 8(1), 1-9.
  63. 51.Kim, B. Y., Choi, D. W., Woo, S. R., Park, E. R., Lee, J. G., Kim, S. H., ... & Yeom, Y. I. (2015). Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma. BMC genomics, 16(1), 279.
  64. 52.Su, C. W., Chiou, Y. W., Tsai, Y. H., Teng, R. D., Chau, G. Y., Lei, H. J., ... & Wu, J. C. (2013). The influence of hepatitis B viral load and pre-S deletion mutations on post-operative recurrence of hepatocellular carcinoma and the tertiary preventive effects by anti-viral therapy. PloS one, 8(6).
  65. 53.Tong, Z., Liu, Y., Ma, H., Zhang, J., Lin, B., Bao, X., ... & Fang, W. (2020). Development, Validation and Comparison of Artificial Neural Network Models and Logistic Regression Models Predicting Survival of Unresectable Pancreatic Cancer. Frontiers in Bioengineering and Biotechnology, 8, 196.
  66. 54.Ho, W. H., Lee, K. T., Chen, H. Y., Ho, T. W., & Chiu, H. C. (2012). Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network. PloS one, 7(1).