Title

以整合性科技接受模式探討物理治療師對於導入復健排程系統之關鍵因素

Translated Titles

To explore the key factors of physical therapist's attitude toward rehabilitation scheduling system with Unified Theory of Acceptance and Use of Technology model

Authors

康祐嘉

Key Words

復健治療 ; 排程 ; 整合性科技接受模式 ; 資訊文化 ; Rehabilitation treatment ; scheduling ; UTAUT ; information culture

PublicationName

高雄醫學大學醫務管理暨醫療資訊學系碩士在職專班學位論文

Volume or Term/Year and Month of Publication

2020年

Academic Degree Category

碩士

Advisor

高浩雲

Content Language

繁體中文

Chinese Abstract

研究目的 隨著人口結構的老化,需要復健的病患越來越多,這會導致復健病患時間的安排越來越繁複,故將排程的作業由人力改為電腦系統不只可以讓物理治療師更專注在專業的工作上,更可以降低病患等候時間,提升雙方的滿意度。在以往的文獻中搜尋,就有不少關於排程系統的探討,這些文章多是研究系統的模式如何創新,但資訊系統的開發者與使用者間的認知與專業都有相當的差異,而文獻的部分對於使用者的探討卻少之又少,往往這樣設計出來的系統總是一修再修,故本次希望透過研究將使用者的想法整理,供未來資訊系統設計可以少幾步彎路。 研究方法 本研究採用問卷調查法,以高雄地區執業中的物理治療師作為對象,共發放問卷911分。透過整合性科技接受模式探討導入資訊化的復健治療排程系統對於物理治療師的關鍵因素,以及資訊文化是否對於物理治療師在資訊化系統上的使用意圖造成影響。 研究結果 本研究希望以科技整合模式找出驅使物理治療師希望使用復健排程系統的關鍵因子,經由問卷的調查後,所研究出來的結果顯示:「績效期望」與「付出期望」是對「使用意圖」有正向的影響效果,與復健排程系統的出發點相同,就是為了減少物理治療師在非專業的作業上所花費的時間。 對於其他產業來說,醫療業是個相對落後而且封閉的圈子,除了醫療技術以外,醫療業所使用的技術大多都是其他產業實施已久的方式,有著相對豐富的經驗,才會導入到醫療業裡面,所以本研究中在關於「資訊文化」的部分,才會呈現負面的結果,畢竟將工業化的排程管理運用在有著不確定性的醫療業上,還是有不少醫療業的同仁保存著遲疑的態度,這些同仁認為每一位病患都是一個獨立的個體,不可以完全的因為病患有著類似病徵而去進行分類,這一部份在問卷最後的題項回饋中即有同仁提出。 資訊化的管理已經是不可阻擋的泥石流,但對於醫療的不確定性,還是有部分同仁希望程式的設計要更注重專業的需求,將每個病患都當成不同的個體,而不是一昧的數字化管理。希望可以透過本研究,在對於復健治療的排程管理上做出一點微小的貢獻。

English Abstract

Objective In this generation, more and more people need rehabilitation, which will lead to more and more complicated arrangements for the time of rehabilitation patients. Therefore, changing the scheduled operation from manpower to computer system can not only allow physical therapists focusing more on professional work can also reduce patient waiting time and increase the satisfaction of both parties. Searching in the previous literature, there are many discussions about the scheduling system. Most of these articles are about how to innovate the system model, but the cognition and professionalism between the developers and users of information systems are quite different, and the part of the literature has very few discussions about users. Often, the system designed in this way is always repaired and repaired, so this time I hope to organize the user's ideas through research to reduce the number of detours for future information system design. Methods In this study, a questionnaire survey was used, with physiotherapists practicing in Kaohsiung as the target, and a total of 911 points were distributed. Through the integrated technology acceptance model, we will discuss the key factors for the introduction of the information-based rehabilitation treatment scheduling system for physical therapists, and whether information culture has an impact on the use intentions of physical therapists on the information system. Results The research results show that performance expectations and social impact have a positive effect on usage intentions, with performance expectations as the highest in terms of scores, indicating that the first need of physical therapists still hopes to reduce the workload through the information system. In the part of paying expectations, the impact on the intention of use is not significant. It may be because the simplification of the system operation and learning is a basic requirement for users. There should be no information system that is not easy to use. Information culture has a considerable influence on the introduction of the system, but it will produce positive or negative results because of different cultures. The system in this research is to actively arrange patients and treat patients as products. May conflict with the culture of the medical industry, so that the research results show that the higher the degree of information culture, the less likely the physical therapist wants to use the rehabilitation scheduling system. Conclusions and Suggestions For other industries, the medical industry is a relatively backward and closed circle. Except for medical technology, most of the technologies used in the medical industry are the methods that have been implemented in other industries for a long time. Only with relatively rich experience will they be introduced into the medical industry. Inside, so the "information culture" part of this study will show a negative result. After all, industrial scheduling management is applied to the medical industry with uncertainty, and many colleagues in the medical industry still keep it. With a hesitant attitude, these colleagues believe that each patient is an independent individual and cannot be classified completely because the patient has similar symptoms. Information management is already an unstoppable debris flow, but for the uncertainty of medical treatment, some colleagues still hope that the design of the program should pay more attention to professional needs, treating each patient as a different individual, rather than ignorant Digital management. I hope that through this research, I can make a small contribution to the management of rehabilitation treatment.

Topic Category 醫藥衛生 > 醫院管理與醫事行政
健康科學院 > 醫務管理暨醫療資訊學系碩士在職專班
社會科學 > 管理學
Reference
  1. 英文文獻
  2. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39): Springer.
  3. Ammenwerth, E. (2019). Technology Acceptance Models in Health Informatics: TAM and UTAUT. Studies in health technology and informatics, 263, 64-71.
  4. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411.
  5. Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303-316.
  6. Bollen, K. A., & Long, J. S. (1993). Testing structural equation models (Vol. 154): Sage.
  7. Claver, E., Llopis, J., González, M. R., & Gasco, J. L. (2001). The performance of information systems through organizational culture. Information Technology & People.
  8. Curry, A., & Moore, C. (2003). Assessing information culture—an exploratory model. International journal of information management, 23(2), 91-110.
  9. Davenport, T. H. (1994). Saving IT's soul: Human-centered information management. Harvard business review, 72(2), 119-131.
  10. Davenport, T. H. (1997). Information Ecology: Mastering the Information and Knowledge Environment: Oxford University Press.
  11. Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology,
  12. Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS quarterly, 453-461.
  13. Earl, M. J. (1994). The new and the old of business process redesign. The Journal of Strategic Information Systems, 3(1), 5-22.
  14. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
  15. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis (Vol. 5): Prentice hall Upper Saddle River, NJ.
  16. Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: its past and its future in health care. Journal of biomedical informatics, 43(1), 159-172.
  17. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
  18. MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
  19. Marchand, D. A., Kettinger, W. J., & Rollins, J. D. (2000). Information orientation: people, technology and the bottom line. MIT Sloan Management Review, 41(4), 69.
  20. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
  21. 中文文獻
  22. 內政部(2019)。歷年全國人口統計資料-07人口年齡結構指標。取自https://www.ris.gov.tw/app/portal/346
  23. 江東懋, 梁明貴, 陳宛伶, 陳玉娉, 楊雅雯, & 邱淑芬. (2012). 利用品管手法可以改善復健科門診病患的治療滿意度-以新竹市某地區醫院為例. 輔仁醫學期刊, 10(1), 13-19.
  24. 周浩瑋. (2014). 以整合性科技接受度模式,探討醫師使用iPad平板電腦查房之研究. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/5mvfnq
  25. 林怡潔. (2014). 以 NFC 技術結合排程演算法建構動態復健室排程機制.
  26. 林玟萱, 謝如蘭, & 蔡沛潔. (2010). 應用史哈特循環: 計畫-執行-檢查-行動模式於臨床復健醫療服務等待時間之改善. 台灣復健醫學雜誌, 38(2), 89-96.
  27. 洪美榕. (2019). 以科技接受模式探討健康存摺及雲端資訊系統之推廣分析. (碩士). 國立東華大學, 花蓮縣. Retrieved from https://hdl.handle.net/11296/mg96x2
  28. 胡志翰. (2004). 整合資料挖礦與遺傳演算法之混合式排程求解方法及實證. (碩士). 國立清華大學, 新竹市. Retrieved from https://hdl.handle.net/11296/rhx75v
  29. 張丁元. (2004). 組織特性, 資訊文化對資訊系統效能之研究. 撰者,
  30. 張文典, 黎秉東, 林鋐宇, & 陳念筑. (2011). 品管圈改善醫院復健治療流程之研究. 中西整合醫學雜誌, 13(3), 17-28.
  31. 郭品誼. (2014). 探討醫師對電子病歷交換行為意圖關鍵因素之研究-以整合性科技接受使用模型觀點.
  32. 郭浚. (2005). 探討組織資訊系統導入偏好與組織資訊文化適配性的研究. (碩士). 國立高雄第一科技大學, 高雄市. Retrieved from https://hdl.handle.net/11296/d3g5g2
  33. 黃文良. (2012). 以整合性科技接受模式探討醫院導入知識管理系統之員工接受度研究. 長榮大學醫務管理學研究所學位論文, 1-89.
  34. 黃芳銘. (2004). 結構方程式模式理論與應用, 台北: 五南圖書出版公司.
  35. 黃瑞珍, 楊怡玲, 李怡慶, 黃雅君, 謝良博, & 王美玲. (2014). 以整合性科技接受模式觀點探討醫療機構員工對異常事件通報系統使用行為之研究-以某區域級教學醫院為例. 澄清醫護管理雜誌, 10(3), 23-33.
  36. 楊明原. (2017). 國民中學校長火線領導與學校效能關係之研究─ 以資訊文化為中介. 中原大學教育研究所學位論文, 1-257.
  37. 鄭宇君. (2016). 復健物理治療流程與醫療資源配置之模擬分析-以A地區醫院復健中心為例. (碩士). 元智大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/89swe2
  38. 鄭雅穗, 盧以詮, 沈聖倫, 陳大勝, & 陳淑嬌. (2015). 應用整合性科技接受模式探討醫院呼吸治療照護管理導入無線射頻辨識技術之成效. 福祉科技與服務管理學刊, 3(3), 329-330.
  39. 蕭穎之. (2018). 整合型科技模式對於醫療自助化服務科技之接受程度研究-以醫院服務流程為例. (碩士). 國立中山大學, 高雄市. Retrieved from https://hdl.handle.net/11296/t62hga
  40. 魏澤蒼. (2017). 物理治療中心醫療資源配置之模擬最佳化研究-以某地區醫院為例. (碩士). 元智大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/pn8enw