Translated Titles

Use of Dual-Energy CT Image in Detecting Bone Marrow Edema of Vertebral Compression Fractures





Key Words

雙能電腦斷層 ; DECT



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

使用磁振造影(MR)影像當作標準對照,評估雙能電腦斷層(DECT)造影的虛擬無鈣影像,是否能診斷脊椎壓迫性骨折的骨髓水腫;並分析DECT造影的虛擬無鈣影像,對脊椎壓迫性骨折,椎體形態上的分類,及雙能電腦斷層數值(CT number)的改變等參數,與骨髓水腫的相關性。 以普查的方式,收集因脊椎壓迫性骨折而執行MR及DECT造影的志願病患,在排除掉因感染及腫瘤的案例後, 共收集了六十八例志願病患,共對126節椎體進行分析。去除其中12節脊椎因嚴重的壓迫性骨折,使得椎體的高度小於4公厘而無法分析;另去除有2節因呼吸過速造成假影,使得雙能電腦斷層掃描無法取得正確的電腦斷層數值。共對112節椎體進行分析 (包含1,患者:病史、年齡、性別。2,傳統X光攝影:壓迫程度。3,DECT:影像、數值、骨折程度。4,MR:骨髓水腫、水腫型態、骨折程度、積水、積氣) 。 DECT造影與MR成像之間的平均時間約為1.13天(範圍0-13天)。依MR影像顯示,112節椎體中,有46節含椎體骨髓水腫(急性壓迫性骨折);66節椎體未見椎體骨髓水腫(陳舊性壓迫性骨折)病變。 使用DECT虛擬無鈣造影,在診斷骨髓水腫,於T檢定中,P值是< 0.0001***,具有統計學上的意義。因此DECT虛擬無鈣造影,有助於評估椎體骨折內的骨髓,使得因故無法接受MR造影的患者(如裝有心臟節律器、腦部或其他部位有金屬夾、幽閉恐懼症,•••等。)有其他更便宜的選擇。 關鍵詞:雙能電腦斷層

English Abstract

Magnetic Resonance (MR) imaging can be the contrast of standard. It evaluates whether the Dual Energy (DE) imaging virtual non-calcium technique can diagnose compression fracture of lumbar spine with marrow edema. Moreover, we analysis the DE imaging virtual non-calcium technique with MR image, and analyze the relationship between bony marrow edema, the classification of the vertebral body shape, the change of CT number from DECT. Collecting volunteers who have been executed DECT and MR are compression fracture of the spine by using general survey. A total of 68 voluntary patients, with analyzing 126 vertebral bodies, are collected as cases, excluding the cases of infection and neoplasm. The 12 vertebral bodies are eliminated due to compression fracture, and it is unanalyzable that the body height is less than 4mm. In addition, the 2 vertebral bodies are excluded due to artifact by breathing too fast, and it makes DECT obtain incorrect CT number. A total of 112 vertebral bodies has been analyzed (including 1, patient: history, age, gender, 2, traditional X-ray: vertebral body high. 3, DECT: area, CT number, cortical defect, sclerosis. 4, MR:bone marrow edema, pattern of edema, cortical defect, air and fluid accumulation). The average time between the DECT virtual non-calcium technique and MR image is about 1.13 days (range: from 0 to 13 days). A total of 112 vertebral bodies were revealed, 46 vertebral bodies with bone marrow edema (acute compression fracture) and 66 vertebral bodies with no bone bruise (old compression fracture) by MR imagines. In the diagnosis of acute vertebral body compression fracture, the DECT virtual non-calcium technique is significant in statistics (the P value <0.0001***) and it is useful to evaluate the vertebral fractures with the bone marrow edema. In addition, the patients who can not take the examination of MR due to some reason (for example, with cardiac pacemakers, with the metal clips of brain or other parts and with claustrophobia, etc…) could have another inexpensive choice. Key word: DECT

Topic Category 醫藥衛生 > 醫藥總論
健康科學學院 > 醫學研究所
  1. Barr, M.S., and Anderson, M.W. (2002). The knee: bone marrow abnormalities. Radiol Clin North Am 40(5), 1109-1120.
  2. Brown, D.B., et al. (2005). Correlation Between Preprocedural MRI findings and Clinical Outcomes in the Treatment of Chronic Symptomatic Vertebral Compression Fractures with Percutaneous Vertebroplasty. Am J Roentgenol 184(6), 1951-1955.
  3. Boks, S.S., Vroegindeweij, D., Koes, B.W., Hunink, M.G., and Bierma-Zeinstra, S.M. (2006). Follow-up of occult bone lesions detected at MR imaging: systematic review. Radiology 238(3), 853-862.
  4. Chae, E.J., Song, J.W. , Seo, J.B. , Krauss, B., Jang, Y.M., and Song, K.S. (2008). Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249(2), 671-681.
  5. Chandarana, H., Godoy, M.C., and Vlahos, I., et al. (2008). Abdominal aorta: evaluation with dualsource dual-energy multidetector CT after endovascular repair of aneurysms-initial observations. Radiology 249(2), 692-700.
  6. Flohr, T.G., McCollough, C.H., and Bruder, H., et al. (2006). First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2), 256-268.
  7. Goodsitt, M.M., Rosenthal, D.I., Reinus, W.R., and Coumas, J. (1987). Two postprocessing CT techniques for determining the composition of trabecular bone. Invest Radiol 22(3), 209-215.
  8. Harry, K. Genant, Chun, Y.Wu., Cornelisvan, K.J., Michael, C., and Nevitt. (1993). Vertebral fracture assessment using a semiquantitative technique. J of bone and mineral research 9(8), 1137-1148.
  9. Johnson, T.R., Krauss, B., and Sedlmair, M. et al. (2007). Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6), 1510-1517.
  10. Kenneth, W.L., Deborah, T.G., Kathy, M.S., Carl, F. P., Salutario, M., and Paul, L.M. (1993). Association of osteoporotic vertebral compression fractures with impaired functional status. The American Journal of Medicine 94(6), 595-601.
  11. Kim, D.H., and Vaccaro,A.R. (2006). Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J 6(5), 479-487.
  12. Nickoloff, E.L., Feldman, F., and Atherton, J.V. (1988). Bone mineral assessment: new dual-energy CT approach. Radiology 168(1), 223-228.
  13. Rangger, C., Kathrein, A., Freund, M.C., Klestil, T., and Kreczy, A. (1998). Bone bruise of the knee: histology and cryosections in 5 cases. Acta Orthop Scand 69(3), 291-294.
  14. Thiryayi, W.A., Thiryayi, S.A., and Freemont, A.J. (2008). Histopathological perspective on bone marrow oedema, reactive bone change and haemorrhage. Eur J Radiol 67(1), 62-67.
  15. Van Kuijk, C , Grashuis, J.L. , Steenbeek, J.C., Schütte, H.E., and Trouerbach, W.T. (1990). Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part I. Theoretical considerations. Invest Radiol 25(8), 876-881.
  16. Yao, L., and Lee, J.K. (1988). Occult intraosseous fracture detection with MR imaging. Radiology 167(3), 749-751.
  17. Mandalia, V., Fogg, A.J., Chari, R., Murray, J., Beale, A., and Henson, J.H. (2005). Bone bruising of the knee. Clin Radiol 60(6), 627-636.
  18. Pache, G., Krauss, B., Peter Strohm, P., Saueressig, U., Philipp Blanke, P., Bulla, S., Oliver Schäfer, O., Helwig, P., Kotter, E., Langer, M., and Tobias Baumann, T. (2010). Dual-Energy CT for Depicting Bone Bruise Lesions. Radiology 256(2), 617-624.