透過您的圖書館登入
IP:34.230.68.214
  • 學位論文

基因轉殖植物溫網室兼顧花粉隔離效能與節能最佳化策略研究

The optimal strategy of pollen filtration and energy saving in sealed greenhouse for transgenic plants

指導教授 : 戴聿彤

摘要


為避免基因轉殖植物花粉自田間試驗設施外流,密閉溫室在整體規劃上,除了空間應具備高度結構氣密性、區域性負壓設計外,更需要搭配適當等級濾網之通風過濾設備,以兼顧防止花粉外洩與節省營運成本之目的。本研究將選用不同等級雙層濾網組合,探討其過濾效能、節能效果與兼顧經營成本之最佳策略。實驗設計方面利用一濾網過濾效能測試系統,自上方導入壓縮空氣及測試花粉,藉前端之蜂巢板使花粉均勻分布於測試系統。並利用氣動粒徑1.5μm, 5μm, 10μm之微粒,以及桑樹(氣動粒徑約19μm),水稻(氣動粒徑約30μm)與玉米(氣動粒徑約100μm)三種不同粒徑的常見基因轉殖花粉進行測試。濾網方面則選用ASHRAE與EN五種不同等級濾網(F5,MERV7,MERV8,F7,MERV18),搭配而成共十組雙層濾網組合進行測試,除驗證其過濾效果外,並量測濾網前後之壓力差異以作為探討能源耗損之依據。 十組不同雙層濾網組合其微粒或花粉的過濾效能皆可達97%以上,與單層高效率濾網(MERV18)的過濾效果不相上下,甚至更佳。對於濾網前後壓力降而言,組合A(F5+MERV7)、組合B(F5+MERV8)及組合D(MERV7+MERV8)壓損最低,分別為MERV18 (15Pa)平均壓損的0.4倍、0.41倍及0.54倍。若以MERV18單層濾網每年所需成本(2片)為基準,則組合D(MERV7+MERV8)、組合E(MERV7+F7)及組合F(MERV8+F7)為最佳,皆為MERV18之0.4倍;其次則為組合A(F5+MERV7)、組合B(MERV7+F7)及組合C(MERV8+F7),約為MERV18之0.42~0.47倍。因此雙層濾網搭配組合之使用,在實務上密閉溫室長時間營運狀況下,應可獲得降低營運成本之優點。 綜合過濾效能、能源與購置成本三項考量,雙層濾網組合A(F5+MERV7)、B(F5+MERV8)或D(MERV7+MERV8),對於密閉溫室運作上除了可有效地阻隔花粉逸散外,同時達到省能以及降低濾網購置成本之目的。而其中又以組合B為最優先考量,未來可提供基因轉殖植物溫網室中,通風系統濾網等級選用最佳化之參考。

並列摘要


In addition to air tightness and negative pressure control, proper grade of filter selected in ventilation system plays an important role on both prevention of pollen disposal and cost in greenhouse. In this study, the filtration efficiency, energy-saving effect and cost of various combinations by two different grades of filters was investigated. In this study, test pollen was delivered by air from the top of test chamber. It was evenly distributed in the chamber after passing the honeycombs. Arizona dust with aerodynamic diameters of 1.5μm, 5μm, 10μm and pollen such as morus alba (19μm), poa pratensis (30μm) and the zea mays (100μm) are served as challenge aerosols. Ten double-layer combinations (A to J) by two grades of filters selected from F5,MERV7,MERV8,F7,MERV18 were tested to evaluate the filtration performance and pressure drop as well as the energy cost. The filtration efficiency of all ten double-layer filter combinations was found to be greater than 97% which is superior to that of MERV18 HEPA filter alone. The pressure drops of A(F5+MERV7), B(F5+MERV8) and D(MERV7+MERV8) are 0.4, 0.41, and 0.54 times that of MERV18(15Pa) respectively. As to the annual cost, combinations of D(MERV7+MERV8), E(MERV7+F7) and F(MERV8+F7) are the lowest which is 0.4 times that of MERV18 (2 filters/year). Combinations of A(F5+MERV7), B(MERV7+F7) and C(MERV8+F7) is 0.42 to 0.47 times that of MERV18 (2 filters/year). Therefore, double-layer combination yields better filtration performance, lower energy consumption and annual cost compared to single HEPA. In this study, it was found that double-layer combination A(F5+MERV7), B(F5+MERV8) and D(MERV7+MERV8) yield equivalent efficiency as MERV18 under consideration of low annual cost. Among these combinations, B(F5+MERV8) is suggested for the optimal choice on filter selection in the greenhouse.

參考文獻


38. 賴昱綦(2012)。基因轉殖植物密閉溫室濾網選用最佳化研究。長榮大學碩士論文。
33. 吳明哲、陳烈夫(2008)。基因轉殖作物田間試驗管理及生物安全評估之建立。農業試驗所技術服務。
30. 行政院農業委員會農糧署(2010)。植物品種及種苗法。行政院農業委員會農糧署。
36. 陳烈夫、杜元凱、吳明哲(2010)。基因轉殖植物田間試驗管理概況。農業試驗所技術服務。
37. 陳烈夫、陳邦華、呂秀英(2004)。基因轉殖作物之環境風險分析及管理模式。農業試驗所技術服務。

延伸閱讀