透過您的圖書館登入
IP:3.133.147.87
  • 學位論文

銠及釕金屬催化碳–氫鍵活化與環化反應於平面銨鹽之合成研究

Rhodium and Ruthenium-Catalyzed Synthesis of Planar Ammonium Salts via C–H Bond Activation and Annulation Reactions

指導教授 : 鄭建鴻

摘要


近幾年,過渡金屬催化碳–氫鍵與環化反應成為天然物、生物活性分子與材料的重要合成策略。隨著這股熱門趨勢,實驗室將碳–氫鍵活化反應領域,視為重要的研究方向。因此,撰寫的論文著重於銠金屬與釕金屬催化碳–氫鍵活化與環化反應於多環吡啶鹽類、喹嗪鹽類及吡啶鹽類的合成。此外,最後一個章節是關於銅金屬引導疊氮化物重排於合成喹啉衍生物的敘述。 第一章節以有效率及方便的氧氣條件,透過銠金屬活化2-芳香吡啶之碳–氫鍵與炔類之環化反應於合成多環吡啶鹽類產物;經由分離純化得到的五環中間體化合物,對於推測的反應機構,形成強而有力的證據;光物理性質的實驗結果,顯現多環吡啶鹽類產物應用於OLED材料具有潛在的發展優勢。 第二章節發展有效率的催化方法,經由銠金屬及釕金屬活化2-烯基吡啶之碳–氫鍵與炔類之環化反應,應用於合成喹嗪鹽類產物;而且,喹嗪鹽類透過氫化反應可以轉換為四氫喹嗪鹽類。 第三章節敘述乙烯基酮、一級胺及炔類之銠金屬催化一鍋化反應於多取代吡啶鹽類之合成;經由反應過程產生的亞胺中間體,進行銠金屬之乙烯基碳–氫鍵活化反應而完成吡啶鹽類之生成;吡啶鹽類產物可以轉換成多取代的吡啶衍生物。 第四章節介紹開發具有高產率、官能基容忍度之新穎性喹嗪鹽類合成路徑;從反應機構實驗,了解2-烷基吡啶經由銅金屬之sp3碳–氫鍵活化反應而產生2-烯基吡啶,再透過銠金屬之sp2碳–氫鍵活化與炔類之[4+2]環化反應,完成整個循環,得到鹽類產物。 第五章節闡述銅金屬引導疊氮化物重排及炔類之分子間環化反應,合成喹啉產物;應用此方法於合成具有生物活性之喹啉衍生物。

關鍵字

銠金屬 釕金屬 碳–氫鍵 活化 環化 平面銨鹽

並列摘要


In recent years, transition metal-catalyzed C–H bond activation and annulation reactions were emerged as an important strategy in the synthesis of natural product, bioactivity molecules and material compounds. In this context, our group also focus on the hot research field of C–H bond activation reaction. The thesis concentrated on the synthesis of polycyclic pyridinium, quinolizinium, and pyridinium salts by rhodium- and ruthenium- catalyzed C–H bond activation and annulation reactions. In addition, copper promoted quinoline synthesis from benzylazides and alkynes through arylmethyl azides rearrangement is demonstrated in the final chapter. Chapter 1 describes an efficient and convenient method for the synthesis of highly substituted polycyclic pyridinium salts from various 2-arylpyridines and alkynes via a Rh(III)-catalyzed C–H bond activation and annulation reactions under an atmosphere of O2. The proposed mechanism is supported by the isolation of a five membered rodacycle. Primary photophysical studies were also performed on the new pyridinium salts compound in OLED materials. Chapter 2 introduces effectual methods to the synthesis of quinolizinium salts from 2-vinylpyridines and alkynes via Rh(III) or Ru(II)-catalyzed C–H activation and annulation reactions. The present quinolizinium salts can be readily converted to the corresponding tetrahydroquinolizinium compounds by hydrogenation. Chapter 3 elaborates a synthetic method for highly substituted pyridinium salts from the multicomponent reaction of vinyl ketones, amines, and alkynes using a rhodium catalyst. The catalytic reaction proceeds via an in situ generated imine-assisted Rh(III)-catalyzed vinylic C–H activation reaction. Synthesis of highly substituted pyridines from pyridinium salts also was demonstrated. Chapter 4 illustrates a new route for quinolizinium salts synthesis from 2-ethylpyridines and alkynes using cooperative catalysis by copper and rhodium with high yields, broad substrate scope and functional group tolerance. Detailed mechanistic studies suggest that the 2-vinylpryridine is formed in situ from 2-ethylpyridine by a copper promoted C(sp3) –H hydroxylation followed by dehydration. Later, a Rh(III)-catalyzed pyridine directed vinylic C(sp2) –H activation and [4+2] annulation with alkynes provide the final product. Chapter 5 shows a technique toward the synthesis of quinolines via copper promote azide rearrangement and intermolecular cycloaddition reaction with internal alkynes. In addition, the method was applied to the synthesis of biological active quinoline compounds.

參考文獻


(16) Jiang, H.; Chen, H.; Wang, A.; Liu, X. Chem. Commun. 2010, 46, 7259.
(7) Huang, H.; Jiang, H.; Chen, K.; Liu, H. J. Org. Chem. 2009, 74, 5476.
(4) (a) Arthur, H. R.; Hui, W. H.; Ng, Y. L. J. Chem. Soc. 1959, 4007. (b) Hu, J.; Zhang, W.-D.; Liu, R.-H.; Zhang, C.; Shen, Y.-H.; Li, H.-L.; Liang, M.-J.; Xu, X.-K. Chem. Biodiversity 2006, 3, 990. (c) Wang, S.-Q.; Wang, G.-Q.; Huang, B.-K.; Zhang, Q.-Y.; Qin, L.-P. Chem. Nat. Compd. 2007, 43, 100.
(6) Liu, X.-Y.; Ding, P.; Huang, J.-S.; Che, C.-M. Org. Lett. 2007, 9, 2645.
(5) (a)Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. (b) Xie, J.; Huang, Z.-Z. Angew. Chem., Int. Ed. 2010, 49, 10181. (c) Zhang, J.; Tiwari, B.; Xing, C.; Chen, X.; Chi, Y. R. Angew. Chem., Int. Ed. 2012, 51, 3649.

延伸閱讀