Title

樟腦衍生之掌性β-胺基醇及β-胺基硫醇在催化不對稱加成反應之研究

Translated Titles

Asymmetric Addition Reactions Catalyzed by Camphor-Derived Chiral β-Amino Alcohols and β-Amino Thiols

Authors

黃偉銘

Key Words

樟腦 ; 不對稱加成反應 ; 二烷基鋅 ; 亨利反應 ; 亞胺 ; 重氮乙酸乙酯 ; camphor ; asymmetric addition reactions ; dialkylzinc ; Henry reaction ; aldimines ; diazo ester

PublicationName

清華大學化學系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

博士

Advisor

汪炳鈞

Content Language

繁體中文

Chinese Abstract

因申請專利緣故,資料延後公開 本論文在討論樟腦衍生之掌性β-胺基醇及β-胺基硫醇催化不對稱加成反應之研究。論文共分三部份,第一部份探討一系列β-胺基醇12a–l為催化劑,促進烷基鋅對芳香亞胺的不對稱加成反應。最後以10 mol%的催化劑12a在添加1.8當量的甲醇添加劑條件下,得到60–92%產率的二級芐胺及84–96%的鏡像選擇性。 第二部份探討一系列β-胺基醇31a–42e、43和44,將其應用在不對稱亨利反應。最後以2 mol%的催化劑35e在添加2當量的硼酸三乙酯添加劑條件下,得到21–>99%產率的硝基醇產物及82–96%的鏡像選擇性。値得注意的是,額外添加34 mol%的去離子水,可進一步提升對位-氯苯甲醛之加成物的產率。 第三部份探討β-胺基硫醇30為催化劑,促進重氮乙酸乙酯對苯甲醛的不對稱加成反應,以建立具光學活性的α-重氮-β-羥基酸乙酯,得到92%的產率和66%的鏡像超越值。

English Abstract

因申請專利緣故,資料延後公開 This thesis reports the application of camphor-derived chiral β-amino alcohols and β-amino thiols in asymmetric addition reactions. In the first part, a series of chiral amino alcohols 12a–l has been synthesized and used in the enantioselective addition of dialkylzinc to aromatic aldimines. Application of the optimal chiral ligand 12a (10 mol%) with methanol (1.8 equiv.) as the additive to activate the reaction of aromatic aldimines with diethylzinc and dimethylzinc resulted in high yields (60–92%) and enantioselectivities (84–96% ee). In the second part, a series of chiral amino alcohols 31e–42e, 43 and 44 has been synthesized and used in asymmetric Henry reaction. Application of the optimal chiral ligand 35e (2 mol%) with triethyl borate (2 equiv.) as the additive to activate the reaction of aldehyde with nitromethane and nitroethane resulted in yields (21–>99%) and enantioselectivities (82–96% ee). Notably, the addition of extra 34 mol% H2O could improve the adduct yield of para-chlorobenzaldehyde. The third part reports the application of β-amino thiol 30 catalyzed asymmetric addition of ethyl diazoacetate to benzaldehyde to give β-hydroxy a-diazo ester in good yield (92%) and with moderate enantioselectivity (66% ee).

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. [1] J. Seyden-penne. In 〝Chiral Auxiliaries and Ligands in Asymmetric Synthesis〞, John-Wiley & Sons, New York, 1995.
    連結:
  2. [3] S. C. Stinson, Chem. Eng. News 1992, 70, Steptember 28, 46-79.
    連結:
  3. [9] K. Soai, T. Hatanaka, T. Miyazawa, J. Chem. Soc., Chem. Commun. 1992, 1097–1098.
    連結:
  4. [11] M. Yamakawa, R. Noyori, J. Am. Chem. Soc. 1995, 117, 6327–6335.
    連結:
  5. [19] W.-M. Huang, B.-J. Uang, Chem. Asian J. 2015, 10, 998–1003.
    連結:
  6. [21] R. Ballin, M. Petrini, Tetrahedron 2004, 60, 1017–1047.
    連結:
  7. [25] Y.-W. Zhong, P. Tian, G.-Q. Lin, Tetrahedron: Asymmetry 2004, 15, 771–776.
    連結:
  8. [26] C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. Int. Ed. 2005, 44, 3881–3884.
    連結:
  9. [27] a) S. Liu, C. Wolf, Org. Lett. 2008, 10, 1831–1834; b) K. Y. Spangler, C. Wolf, Org. Lett. 2009, 11, 4724–4727.
    連結:
  10. [28] H. Y. Kim, K. Oh, Org. Lett. 2009, 11, 5682–5685.
    連結:
  11. [35] W. Yao, J. Wang, Org. Lett. 2003, 5, 1527–1530.
    連結:
  12. [36] F. Benfatti, S. Yilmaz, P. G. Cozzi, Adv. Synth. Catal. 2009, 351, 1763–1767.
    連結:
  13. [39] F. Xiao, Y. Liu, J. Wang, Tetrahedron Lett. 2007, 48, 1147–1149; b) M. E. Dudley, M. M. Morshed, C. L. Brennan, M. S. Islam, M. S. Ahmad, M. R. Atuu, B. Branstetter, M. M. Hossain, J. Org. Chem. 2004, 69, 7599–7608.
    連結:
  14. [41] A. L. Gemal, J. L. Luche, J. Am. Chem. Soc. 1981, 103, 5454-5459.
    連結:
  15. [44] Y.-C. Huang, B.-J. Uang, Chem. Asian. J. 2014, 9, 2444-2448.
    連結:
  16. 因申請專利緣故,資料延後公開
  17. [2] D. B. Calne, M. Sandlar, Nature 1970, 226, 21–24.
  18. [4] Chiral reagent, see: a) M. M. Midland, Chem. Rev. 1989, 89, 1553–1561; b) J. A. Marshall, Chem. Rev. 1996, 96, 31–47; c) J. M. Brunel, Chem. Rev. 2005, 105, 857–897; Chiral auxiliary, see: d) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127–2129; e) J. K. Whitesell, Chem. Rev. 1992, 92, 953–964; f) P. E. Harrington, T. Murai, C. Chu, M. A. Tius; J. Am. Chem. Soc. 2002, 124, 10091–10100; Chiral catalyst, see: g) W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029–3069; h) M. Mellah, A. Voituriez, E. Schulz, Chem. Rev. 2005, 107, 5133–5209; i) J. C. Kizirian, Chem. Rev. 2008, 108, 140–205.
  19. [5] For examples on using (−)-MITH as the catalyst, see: a) P.-Y. Wu, H.-L. Wu, B.-J. Uang, J. Org. Chem. 2006, 71, 833–835; b) H.-L. Wu, P.-Y. Wu, B.-J. Uang, J. Org. Chem. 2007, 72, 5935–5937; c) H.-L. Wu, P.-Y. Wu, Y.-Y. Shen, B.-J. Uang, J. Org. Chem. 2008, 73, 6445–6447; d) P.-Y. Wu, H.-L. Wu, Y.-Y. Shen, B.-J. Uang, Tetrahedron: Asymmetry 2009, 20, 1837–1841; e) Y.-N. Cheng, H.-L. Wu, P.-Y. Wu, Y.-Y. Shen, B.-J. Uang, Chem. Asian J. 2012, 7, 2921–2924; For examples on using (+)-MINBOL as the catalyst, see; f) Z.-L. Wu, H.-L. Wu, P.-Y. Wu, B.-J. Uang, Tetrahedron: Asymmetry 2009, 20, 1556–1560; g) C.-H. Tseng, Y.-M. Hung, B.-J. Uang, Tetrahedron: Asymmetry 2012, 23, 130–135.
  20. [6] a) D. Ender, U. Reinhold, Tetrahedron: Asymmetry 1997, 8, 1895–1946; b) R. Bloch, Chem. Rev. 1998, 98, 1407–1438; c) M. Chrzanowska, M. D.Rozwadowska, Chem. Rev. 2004, 104, 3341–3370; d) G. K. Friestad, A. K. Mathies, Tetrahedron 2007, 63, 2541–2569.
  21. [7] a) S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069–1094; b) K. Yamada, K. Tomioka, Chem. Rev. 2008, 108, 2874–2886; c) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713–1760; d) S. Kobayashi, Y. Mori, J. S. Fossey, M. M. Salter, Chem. Rev. 2011, 111, 2626–2704.
  22. [8] a) W. B. Jennings, C. J. Lovely, Tetrahedron Lett. 1988, 29, 3725–3728; b) W. B. Jennings, C. J. Lovely, Tetrahedron 1991, 47, 5561–5568.
  23. [10] a) D. Guijarro, P. Pinho, P. G. Andersson, J. Org. Chem. 1998, 63, 2530–2535; b) P. Brandlt, C. Hedberg, K. Lawonn, P. Pinho, P. G. Andersson, Chem. Eur. J. 1999, 5, 1692–1699; c) P. Pinho, P. G. Andersson, Tetrahedron 2001, 57, 1615–1618.
  24. [12] a) C. Jimeno, A. Vidal-Ferran, A. Moyano, M. A. Pericás, A. Riera, Tetrahedron Lett. 1999, 40, 777–780; b) C. Jimeno, K. S. Reddy, L. Solà, A. Moyano, M. A. Pericàs, A. Riera, Org. Lett. 2000, 2, 3157–3159.
  25. [13] a) K. J. M. Beresford, Tetrahedron Lett. 2002, 43, 7175–7177; b) K. J. M. Beresford, Tetrahedron Lett. 2004, 45, 6041–6044.
  26. [14] a) X. Zhang, L. Gong, A. Mi, X. Cui, Y. Jiang, M. C. K. Choi, A. S. C. Chan, Tetrahedron Lett. 2001, 42, 6369–6372; b) H.-L. Zhang, X.-M. Zhang, L.-Z. Gong, A.-Q. Mi, X. Chi, Y.-Z. Jiang, M. C. K. Choi, A. S. C. Chan, Org. Lett. 2002, 4, 1399–1402; c) H.-L. Zhang, F. Jiang, X.-M. Zhang, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Wu, Chem. Eur. J. 2004, 10, 1481–1492.
  27. [15] 黃偉銘碩士論文,國立清華大學化學系,2010年。
  28. [16] a) Trimethyl borate could promote the Reformatsky reaction, see: M. W. Rathke, A. Lindert, J. Org. Chem. 1970, 35, 3966–3967; b) Methanol could enhance the both yields and enantioselectivities of the asymmetric addition Ph2Zn to ketones, see: P. I. Dosa, G. C. Fu, J. Am. Chem. Soc. 1998, 120, 445–446; c) Triphenylphosphine oxide could enhance the enantioselectivities of the epoxidation of enones, see: K. Daikai, M. Kamaura, J. Inanaga, Tetrahedron Lett. 1998, 39, 7321–7322; d) For using isopropanol to improve the yields and enantioselectivities of the addition of dimethylzinc to α-ketoesters, see: K. Funabashi, M. Jachmann, M. Kanai, M. Shibasaki, Angew. Chem. 2003, 42, 5489–5492; e) MPEGs was reported to be beneficial to the catalytic asymmetric aryl and alkyl transfer reactions to aldehydes, see: J. Rudolph, N. Hermanns, C. Bolm, J. Org. Chem. 2004, 69, 3997–4000; f) Triethyl borate could increase the reaction rate that the addition of dimethylzinc to α-ketoesters catalyzed by (−)-MITH, see: ref. [5c].
  29. [17] For related zinc alkoxide on asymmetric addition reaction, see: a) D. Enders, J. Zhu, G. Raabe, Angew. Chem. Int. Ed. 1996, 35, 1725–1728; b) L. Tan, C.-Y. Chen, R. D. Tillyer, E. J. J. Grabowski, P. J. Reider, Angew. Chem. Int. Ed. 1999, 38, 711–713; c) N. Chinkov, A. Warm, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 2957–2961.
  30. [18] a) P. G. Andersson, D. Guijarro, D. Tanner, J. Org. Chem. 1997, 62, 7364–7375; b) R. Almansa, D. Guijarro, M. Yus, Tetrahedron: Asymmetry 2007, 18, 2828–2840.
  31. [20] a) F. A. Luzzio, Tetrahedron 2001, 57, 915–945; b) J. Boruwa, N. Gogoi, P. P. Saikia, N. C. Barua, Tetrahedron: Asymmetry 2006, 11, 3315–3326; c) S. H.Handa, K. Nagawa, Y. Sohtome, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed. 2008, 47, 3230–3233.
  32. [22] H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 1992, 114, 4418–4420.
  33. [23] a) B. M. Trost, V. S. C. Yeh, Angew. Chem. Int. Ed. 2002, 41, 861–863; b) B. M. Trost, V. S. C. Yeh, H. Ito, N. Bremeyer, Org. Lett. 2002, 4, 2621–2623.
  34. [24] J. Gao, R. A. Zingaro, J. H. Reibenspies, A. E. Martell, Org. Lett. 2004, 6, 2453–2455.
  35. [29] B. Zheng, M. Wang, Z. Li, Q. Bian, J. Mao, S. Li, S. Liu, M. Wang, J. Zhong, H. Guo, Tetrahedron: Asymmetry 2011, 22, 1156–1160.
  36. [30] a) 楊博堯碩士論文,國立清華大學化學系,2010年; b) 鄭丞博博士論文,國立清華大學化學系,2011年; c) 曾志豪博士論文,國立清華大學化學系,2011年; d) 許家榕碩士論文,國立清華大學化學系,2011年; e) 陳瑋駿碩士論文,國立清華大學化學系,2014年。
  37. [31] H. S. Wilkinson, P. T. Grover, C. P. Vandenbossche, R. P. Bakale, N. N. Bhongle, S. A. Wald, C. H. Senanayake, Org. Lett. 2001, 3, 553–556.
  38. [32] a) I. Iovel, K. Mertins, J. Kishchel, A. Zapf, M. Beller, Angew. Chem. Int. Ed. 2005, 44, 3913–3917; b) G. Schäfer, J. W. Bode, Angew. Chem. Int. Ed. 2011, 50, 10913–10916; c) R. Savela, M. Majewski, R. Leino, Eur. J. Org. Chem. 2014, 4137–4147.
  39. [33] a) T. Tsuruta, Pure Appl. Chem., 1981, 53, 1745–1751; b) W. Kuran, M. Czernecka, J. Organomet. Chem. 1984, 263, 1–7.
  40. [34] a) K. G. Watson, Y. M. Fung, M. Gredley, G. J. Bird, W. R. Jackson, H. Gountzos, B. R. Mattews, J. Chem. Soc., Chem. Commun. 1990, 1018–1019; b) D. Xu, K. B. Sharpless, Tetrahedron Lett. 1994, 35, 4685–4688; c) K. Hasegawa, S. Arai, A. Nishida, Tetrahedron 2006, 62, 1390–1401; d) K. Hasegawa, N. Kimura, S. Arai, A. Nishida, J. Org. Chem. 2008, 73, 6363–6368; d) Y. Zhang, J. Wang, Chem. Commun., 2009, 5350–5361; e) B. M. Trost, S. Malhotra, P. Koschker, P. Ellerbrock, J. Am. Chem. Soc. 2012, 134, 2075–2084; f) B. M. Trost, S. Malhotra, P. Ellerbrock, Org. Lett. 2013, 15, 440–443.
  41. [37] B. M. Trost, S. Malhotra, B. A. Fried, J. Am. Chem. Soc. 2009, 131, 1674–1675.
  42. [38] W. Wang, K. Shen, X. Hu, J. Wang, X. Liu, X. Feng, Synlett 2009, 10, 1655–1658.
  43. [40] a) T.-H. Yan, C.-W. Tan, H.-C. Lee, H.-C. Lo, T.-Y. Huang, J. Am. Chem. Soc. 1993, 115, 2613-2621; b) R. Braslau, H. Kuhn, L. C. Burri II, K. Lanham, C. J. Stenland, Tetrahedron Lett. 1996, 37, 7933-7936.
  44. [42] A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff, R. D. Shah, J. Org. Chem. 1996, 61, 3849-3862.
  45. [43] a) M. Shi, Z. Y. Lei, Q, Xu, Adv. Synth. Catal. 2006, 348, 2237-2242; b) B. H. Lipshutz, H. Shimizu, Angew. Chem. 2004, 43, 2228-2230; c) Y. Q. Wang, S. M.Lu, Y. G. Zhou, J. Org. Chem. 2007, 72, 3729-3734.
  46. [45] a) G. Lai, F. Guo, Y. Zheng, Y. Fang, H. Song, K. Xu, S. Wang, Z. Zha, Z. Wang, Chem. Eur. J. 2011, 17, 114-117; b) B. V. S. Reddy, S. M. Reddy, S. Manisha, C. Mada, Tetrahedron: Asymmetry 2011, 22, 530-535.
  47. [46] a) P. B. Kisanga, J. G. Verkade, J. Org. Chem. 1999, 64, 4298-4303; b) R. Kowalczyk, J. Skarżewski, Tetrahedron: Asymmetry 2009, 20, 2467-2473; c) A. Gualandi, L. Cerisoli, H. Stoeckli-Evans, D. Savoia, J. Org. Chem. 2011, 76, 3399-3408.
  48. [47] a) T. Arai, Y. Taneda, Y. Endo, Chem. Commun., 2010, 46, 7936-7938; b) W. Jin, X. Li, B. Wan, J. Org. Chem. 2011, 76, 484-491.