透過您的圖書館登入
IP:52.14.221.113
  • 學位論文

於鈦金屬上合成二氧化鈦奈米結構應用於無連結劑之鋰離子電池陽極

Syntheses of Anatase TiO2 Nanostructures on Ti Metal as Binder-free Anodes for Lithium Ion Batteries

指導教授 : 李紫原
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用水熱反應,直接合成出生長於鈦金屬上二氧化鈦奈米結構材料,應用於無連結劑之鋰離子電池陽極。藉由調控不同的反應條件可得到三種不同形貌的奈米結構,分別為奈米線狀、奈米片狀與奈米板狀。   鈉離子於鈦酸鈉合成反應時進入TiO6結構中的速率會影響形貌的生成,較快的速率有助於奈米線狀形貌生成,較慢的速率有助於奈米片狀形貌生成。   奈米線狀二氧化鈦材料在三種形貌中具有最好的鋰離子電池效能表現。在1 C (335 mA/g)充放電速率下經過了100次循環後能保有220.95 mAh/g的電容值,在20 C的高速充放電下也有99.04 mAh/g的電容值表現。其優異的效能歸因於較大的比表面積與較小的電荷傳輸阻抗。此結果顯示本研究合成之生長於鈦金屬上之二氧化鈦材料可以做為一個優異的鋰離子電池陽極材料。

並列摘要


In our work, anatase TiO2 nanostructures on Ti foil transformed from sodium titanate were synthesized by a facile hydrothermal reaction. Under different hydrothermal conditions, diverse morphologies including nanowire, nanosheet and nanobelt can be obtained. The rate of sodium ion intercalating into TiO6 structure during the hydrothermal reaction will influence the morphology of sodium titanate. High intercalation rate occurring at high temperature and high sodium ion concentration environment leads to the formation of nanowire TiO2. On the contrary, lamellar TiO2 including nanosheet and nanobelt were obtained in low intercalation rate condition. Anatase TiO2 on conductive Ti foil can be used as a binder-free anode material for lithium ion batteries. Nanowire exhibits the best lithium ion batteries performance among three different morphologies and retains 220.95 mAh/g after 100 cycles at the rate of 1 C (335 mA/g). In variable current test, at the rate of 20 C (6.7 A/g), anatase TiO2 nanowire still remains 99.04 mAh/g. The extraordinary performance can be attributed to high specific surface area and low charge transfer resistance. This result suggests that anatase TiO2 growing on Ti foil can be a promising candidate for high performance lithium ion batteries.

參考文獻


(21) (a) Das, S. K.; Darmakolla, S.; Bhattacharyya, A. J. J Mater Chem 2010, 20, 1600(b) Das, S. K.; Patel, M.; Bhattacharyya, A. J. Acs Appl Mater Inter 2010, 2, 2091(c) Han, H.; Song, T.; Bae, J. Y.; Nazar, L. F.; Kim, H.; Paik, U. Energ Environ Sci 2011, 4, 4532(d) Lee, D. H.; Kim, D. W.; Park, J. G. Cryst Growth Des 2008, 8, 4506(e) Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Acs Appl Mater Inter 2010, 2, 2046(f) Qiu, Y. C.; Yan, K. Y.; Yang, S. H.; Jin, L. M.; Deng, H.; Li, W. S. Acs Nano 2010, 4, 6515.
(16) (a) Chen, Z. H.; Belharouak, I.; Sun, Y. K.; Amine, K. Adv Funct Mater 2013, 23, 959(b) Ramamoorthy, M.; Kingsmith, R. D.; Vanderbilt, D. Phys Rev B 1994, 49, 7709(c) Su, X.; Wu, Q. L.; Zhan, X.; Wu, J.; Wei, S. Y.; Guo, Z. H. J Mater Sci 2012, 47, 2519(d) Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. J Power Sources 2009, 192, 588(e) Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Energ Environ Sci 2012, 5, 6652.
(26) Liu, H. W.; Yang, D. J.; Zheng, Z. F.; Ke, X. B.; Waclawik, E.; Zhu, H. Y.; Frost, R. L. J Raman Spectrosc 2010, 41, 1331.
(27) (a) Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Adv Mater 2006, 18, 2807(b) Kukovecz, A.; Hodos, N.; Horvath, E.; Radnoczi, G.; Konya, Z.; Kiricsi, I. J Phys Chem B 2005, 109, 17781(c) Liu, P. R.; Zhang, H. M.; Liu, H. W.; Wang, Y.; Yao, X. D.; Zhu, G. S.; Zhang, S. Q.; Zhao, H. J. J Am Chem Soc 2011, 133, 19032(d) Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Tam, H. L.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Adv Mater 2014, 26, 6111.
(10) (a) Antonelli, D. M.; Ying, J. Y. Angew Chem Int Edit 1995, 34, 2014(b) Chen, S. F.; Chen, L.; Gao, S.; Cao, G. Y. Mater Chem Phys 2006, 98, 116(c) Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. J Mater Res 2001, 16, 3331.

延伸閱讀