Title

銅硫族化物零維與一維奈米結構 之製備、分析與應用

Translated Titles

Growth, Analysis and Applications of 0D and 1D Copper Chalcogenides Nanostructures

Authors

顏鈺庭

Key Words

銅硫族化物 ; 一維奈米結構 ; 零維奈米結構 ; 奈米粒子 ; 銅銦硫 ; copper chalcogenide ; 1D nanostructure ; 0D nanostructure ; nanocrystal ; CuInS2 ; heterostructure

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

博士

Advisor

闕郁倫

Content Language

英文

Chinese Abstract

本篇論文著重在開發數種簡易製備零維與一維銅硫族化物(Copper chalcogenide)奈米結構的方法以及其可能的應用。 本篇論文中,零維與一維銅硫族化物討論的範疇著重於銅銦硫(CuInS2)、銅銦硒(CuInSe2)、銅銦鎵硫(Cu(In,Ga)S2)、銅銦鎵硒(Cu(In,Ga)Se2)及銅鋅錫硫(Cu2(Zn,Sn)S4)。本篇論文主要分作兩個部分,每個部分再細分成零維與一維奈米結構表述:第一部分描述開發簡易製備零維與一維銅硫族化物奈米結構的方法;第二部分介紹上述零維與一維銅硫族化物奈米結構的應用。在第一章中,將介紹銅硫族化物的發展沿革,與其如何在近代薄膜太陽能電池中扮演關鍵角色。第二章中將綜觀本篇論文實驗進行的方法、架構與使用的儀器。第三章闡述僅用一種界面活性劑(surfactant)簡易製備銅銦硫、銅銦硒及銅鋅錫硫奈米晶粒的方法及分析;第四章將介紹快速、大面積且無需模版即可廣用製備一維銅銦硫、銅銦硒、銅銦鎵硫及銅銦鎵硒的製程。有關本論文所製備之零維與一維銅硫族化物奈米結構的相關應用,如抗反射、光-熱能轉換、太陽能電池及光偵測器將於第五章介紹。第六章將總結本篇論文的貢獻與展望。

English Abstract

This dissertation aims to develop several approaches for facile synthesis and applications of copper chalcogenide nanostructures. The scope of copper chalcogenides discussed in this dissertation are CuInS2, CuInSe2, Cu(In,Ga)S2, Cu(In,Ga)Se2 and Cu2(Zn,Sn)S4. In addition, this dissertation is constructed into two main parts. Each part can be further divided into zero dimensional and one dimensional nanostructures. Part I : Facile methodology for preparing copper chalcogenides nanostructures. Part II : Applications developed as examples by prepared copper chalcogenides nanostructures in part I. In chapter 1, we briefly introduce the development of copper chalcogenides and how versatile of it to influence the modern thin film photovoltaic devices. Chapter 2 will scheme an overview of experiment procedures and apparatus to conduct all the works throughout this dissertation. The facile approach proposed for synthesis CuInS2, CuInSe2, and Cu2(Zn,Sn)S4 zero dimensional nanocrystals and methodologies for hybridization noble metal domains on to CuInS2 by utilize only one surfactant were discussed in chapter 3. Chapter 4 emphasizes a facile methodology to create one dimensional nanotips of CuInS2, CuInSe2, Cu(In,Ga)S2 and Cu(In,Ga)Se2 by one step, template-free ion sputtering process. Both the applications of zero dimensional and one dimensional copper chalcogenide nanostructures are demonstrated as antireflectance, photo-thermal energy conversion, photovoltaic and photodetector in chapter 5 followed by the contributions and outlooks of this dissertation will be concluded in chapter 6.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. (2) Wherry, E. T. Radio-detector minerals American Mineralogist 1925, 10, 28-31.
    連結:
  2. (5) Chopra, K. L.; Das, S. R., Thin film solar cells, Plenum Press: New York, 1983.
    連結:
  3. (6) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, 676-677.
    連結:
  4. (7) Shay, J. L.; Tell, B.; Kasper, H. M. Visible Stimulated Emission in Ternary Chalcopyrite Sulfides and Selenides. Applied Physics Letters 1971, 19, 366-368.
    連結:
  5. (8) Migliorato, P.; Tell, B.; Shay, J. L.; Kasper, H. M. Junction electroluminescence in CuInSe2. Applied Physics Letters 1974, 24, 227-228.
    連結:
  6. (9) Parkes, J.; Tomlinson, R. D.; Hampshire, M. J. The fabrication of p and n type single crystals of CuInSe2. Journal of Crystal Growth 1973, 20, 315-318.
    連結:
  7. (10) Kazmerski, L. L.; White, F. R.; Ayyagari, M. S.; Juang, Y. J.; Patterson, R. P. Growth and characterization of thin‐film compound semiconductor photovoltaic heterojunctions. Journal of Vacuum Science & Technology 1977, 14, 65-68.
    連結:
  8. (11) Wagner, S.; Shay, J. L.; Migliorato, P.; Kasper, H. M. CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters 1974, 25, 434-435.
    連結:
  9. (12) Smith., R. DEVICE APPLICATIONS OF THE TERNARY SEMICONDUCTING COMPOUNDS. Journal de Physique Colloques 1975, 36, C3-89-C3-99.
    連結:
  10. (13) Mickelsen, R. A.; Chen, W. S. In Polycrystalline thin film CuInSe2 solar cells, 16th IEEE PVSC, San Diego, San Diego, 1982; pp 781-784.
    連結:
  11. (14) Shafarman, W. N.; Klenk, R.; McCandless, B. E. Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap. Journal of Applied Physics 1996, 79, 7324-7328.
    連結:
  12. (15) Engelmann, M.; McCandless, B. E.; Birkmire, R. W. Formation and analysis of graded CuIn(Se1−ySy)2 films. Thin Solid Films 2001, 387, 14-17.
    連結:
  13. (16) Kentaro, I.; Tatsuo, N. Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Japanese Journal of Applied Physics 1988, 27, 2094.
    連結:
  14. (17) Goryunova, N. A.; Anshon, A. V.; Karpovich, I. A.; Leonov, E. I.; Orlov, V. M. Photoelectrical properties of n-type CdSnP2-p-type Cu2S heterojunction. physica status solidi (a) 1970, 2, K117-K120.
    連結:
  15. (21) Wu, Y.; Wadia, C.; Ma, W.; Sadtler, B.; Alivisatos, A. P. Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals. Nano Letters 2008, 8, 2551-2555.
    連結:
  16. (23) Basol, B. M.; Kapur, V. K. Deposition of CuInSe2 films by a two-stage process utilizing E-beam evaporation. Electron Devices, IEEE Transactions on 1990, 37, 418-421.
    連結:
  17. (24) Siemer, K.; Klaer, J.; Luck, I.; Bruns, J.; Klenk, R.; Bräunig, D. Efficient CuInS2 solar cells from a rapid thermal process (RTP). Solar Energy Materials and Solar Cells 2001, 67, 159-166.
    連結:
  18. (26) Jackson, P.; Hariskos, D.; Wuerz, R.; Kiowski, O.; Bauer, A.; Friedlmeier, T. M.; Powalla, M. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) – Rapid Research Letters 2015, 9, 28-31.
    連結:
  19. (27) Feynman, R. P. There's plenty of room at the bottom. Engineering and science 1960, 23, 22-36.
    連結:
  20. (28) LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society 1950, 72, 4847-4854.
    連結:
  21. (29) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. SYNTHESIS AND CHARACTERIZATION OF MONODISPERSE NANOCRYSTALS AND CLOSE-PACKED NANOCRYSTAL ASSEMBLIES. Annual Review of Materials Science 2000, 30, 545-610.
    連結:
  22. (30) Kolny-Olesiak, J.; Weller, H. Synthesis and Application of Colloidal CuInS2 Semiconductor Nanocrystals. ACS Applied Materials & Interfaces 2013, 5, 12221-12237.
    連結:
  23. (31) Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. Journal of the American Chemical Society 2008, 130, 16770-16777.
    連結:
  24. (32) Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells. Nano Letters 2008, 8, 2982-2987.
    連結:
  25. (34) Li, Q.; Zhai, L.; Zou, C.; Huang, X.; Zhang, L.; Yang, Y.; Chen, X. a.; Huang, S. Wurtzite CuInS2 and CuInxGa1-xS2 nanoribbons: synthesis, optical and photoelectrical properties. Nanoscale 2013, 5, 1638-1648.
    連結:
  26. (35) Steinhagen, C.; Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Harris, J. T.; Holmberg, V. C.; Korgel, B. A. Solution−Liquid−Solid Synthesis of CuInSe2 Nanowires and Their Implementation in Photovoltaic Devices. ACS Applied Materials & Interfaces 2011, 3, 1781-1785.
    連結:
  27. (37) CE, W.; Tanaka S, S. T.; S, S. Fabrication of Vertical Cu2ZnSnS4 Nanowire Arrays by Two-Step Electroplating Method into Anodic Aluminum Oxide Template. J Mater Sci Nanotechnol 2014, 1, S103.
    連結:
  28. (38) Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Romig, A. D.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists, Springer US: 2012.
    連結:
  29. (41) Williams, D. B.; Carter, C. B., Transmission Electron Microscopy, 2 ed.; Springer US: 2009.
    連結:
  30. (42) Swinehart, D. F. The Beer-Lambert Law. Journal of Chemical Education 1962, 39, 333.
    連結:
  31. (44) Oswald, S., In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd: 2006.
    連結:
  32. (45) Gfroerer, T. H., In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd: 2006.
    連結:
  33. (46) Alonso, M. I.; Wakita, K.; Pascual, J.; Garriga, M.; Yamamoto, N. Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2. Physical Review B 2001, 63, 075203.
    連結:
  34. (47) Tell, B.; Shay, J. L.; Kasper, H. M. Electrical Properties, Optical Properties, and Band Structure of CuGaS2 and CuInS2. Physical Review B 1971, 4, 2463-2471.
    連結:
  35. (48) Chen, H.; Yu, S.-M.; Shin, D.-W.; Yoo, J.-B. Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles. Nanoscale Research Letters 2010, 5, 217-223.
    連結:
  36. (49) Luo, P.; Zhu, C.; Jiang, G. Preparation of CuInSe2 thin films by pulsed laser deposition the Cu–In alloy precursor and vacuum selenization. Solid State Communications 2008, 146, 57-60.
    連結:
  37. (50) Jiang, F.; Shen, H.; Jin, J.; Wang, W. Preparation and Optoelectronic Properties of Cu2ZnSnS4 Film. Journal of The Electrochemical Society 2012, 159, H565-H569.
    連結:
  38. (51) Yoo, H.; Kim, J. Comparative study of Cu2ZnSnS4 film growth. Solar Energy Materials and Solar Cells 2011, 95, 239-244.
    連結:
  39. (52) Yu, K.; Carter, E. A. A Strategy to Stabilize Kesterite CZTS for High-Performance Solar Cells. Chemistry of Materials 2015, 27, 2920-2927.
    連結:
  40. (53) Lv, W.; Phelan, P. E.; Swaminathan, R.; Otanicar, T. P.; Taylor, R. A. Multifunctional Core-Shell Nanoparticle Suspensions for Efficient Absorption. J. Sol. Energy Eng. Trans.-ASME 2013, 135.
    連結:
  41. (54) Kumar, S. S.; Kumar, C. S.; Mathiyarasu, J.; Phani, K. L. Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-polystyrenesulfonate in Aqueous Solutions:  Nanocomposite Formation, Stability, and Application in Catalysis. Langmuir 2007, 23, 3401-3408.
    連結:
  42. (55) Chen, J.; Lim, B.; Lee, E. P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81-95.
    連結:
  43. (56) Yu, P.; Wen, X.; Lee, Y.-C.; Lee, W.-C.; Kang, C.-C.; Tang, J. Photoinduced Ultrafast Charge Separation in Plexcitonic CdSe/Au and CdSe/Pt Nanorods. The Journal of Physical Chemistry Letters 2013, 4, 3596-3601.
    連結:
  44. (57) Cozzoli, P. D.; Curri, M. L.; Agostiano, A. Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems. Chemical Communications 2005, 3186-3188.
    連結:
  45. (58) Subramanian, V.; Wolf, E. E.; Kamat, P. V. Green Emission to Probe Photoinduced Charging Events in ZnO−Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration†. The Journal of Physical Chemistry B 2003, 107, 7479-7485.
    連結:
  46. (59) Bang, J. U.; Lee, S. J.; Jang, J. S.; Choi, W.; Song, H. Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation. The Journal of Physical Chemistry Letters 2012, 3, 3781-3785.
    連結:
  47. (60) Sun, Y.; Delucchi, M.; Ogden, J. The impact of widespread deployment of fuel cell vehicles on platinum demand and price. International Journal of Hydrogen Energy 2011, 36, 11116-11127.
    連結:
  48. (61) Zheng, H.; Smith, R. K.; Jun, Y.-w.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324, 1309-1312.
    連結:
  49. (62) Tao, A. R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4, 310-325.
    連結:
  50. (63) Nelson, J., The Physics of Solar Cells, Imperial College Press p214: 2003.
    連結:
  51. (64) Zhang, H.-T.; Ding, J.; Chow, G.-M.; Dong, Z.-L. Engineering Inorganic Hybrid Nanoparticles: Tuning Combination Fashions of Gold, Platinum, and Iron Oxide. Langmuir 2008, 24, 13197-13202.
    連結:
  52. (65) Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods. Science 2004, 304, 1787-1790.
    連結:
  53. (66) Yang, J.; Elim, H. I.; Zhang, Q.; Lee, J. Y.; Ji, W. Rational Synthesis, Self-Assembly, and Optical Properties of PbS−Au Heterogeneous Nanostructures via Preferential Deposition. Journal of the American Chemical Society 2006, 128, 11921-11926.
    連結:
  54. (67) Yang, J.; Chen, X.; Ye, F.; Wang, C.; Zheng, Y.; Yang, J. Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. Journal of Materials Chemistry 2011, 21, 9088-9094.
    連結:
  55. (69) Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U. Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe−Au Nanodumbbells. Nano Letters 2008, 8, 637-641.
    連結:
  56. (70) Ziberi, B.; Cornejo, M.; Frost, F.; Rauschenbach, B. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. Journal of Physics: Condensed Matter 2009, 21, 224003.
    連結:
  57. (71) Miyamoto, I.; Yanagimoto, K.; Pahlovy, S. A.; Mahmud, S. F. CHANGES OF RIPPLE MORPHOLOGY OF CLEAVED Si SURFACE BY LOW-ENERGY Ar+ ION BEAM SPUTTERING. International Journal of Nanoscience 2011, 10, 495-499.
    連結:
  58. (72) Ziberi, B.; Frost, F.; Rauschenbach, B.; Hoche, T. Highly ordered self-organized dot patterns on Si surfaces by low-energy ion-beam erosion. Applied Physics Letters 2005, 87, 033113-3.
    連結:
  59. (73) Munoz-Garcia, J.; Gago, R.; Cuerno, R.; Sanchez-Garcia, J. A.; Redondo-Cubero, A.; Castro, M.; Vazquez, L. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets. Journal of Physics-Condensed Matter 2012, 24, 375302.
    連結:
  60. (74) Zhou, J.; Hildebrandt, M.; Lu, M. Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment. Journal of Applied Physics 2011, 109, 053513-5.
    連結:
  61. (75) Wei, Q.; Zhou, X.; Joshi, B.; Chen, Y.; Li, K.-D.; Wei, Q.; Sun, K.; Wang, L. Self-Assembly of Ordered Semiconductor Nanoholes by Ion Beam Sputtering. Advanced Materials 2009, 21, 2865-2869.
    連結:
  62. (76) Arranz, M. A.; José, M. C. Nanoscale ripple formation in Co/Si(100) thin films with Ar + beam etching. Journal of Physics: Conference Series 2010, 200, 072007.
    連結:
  63. (77) Rusponi, S.; Boragno, C.; Valbusa, U. Ripple Structure on Ag(110) Surface Induced by Ion Sputtering. Physical Review Letters 1997, 78, 2795-2798.
    連結:
  64. (78) Riedel, N.; Williams, J.; Popat, K. Ion beam etching titanium for enhanced osteoblast response. J Mater Sci 2011, 46, 6087-6095.
    連結:
  65. (79) Reiche, R.; Hauffe, W. Pyramid formation on a high index copper bicrystal during bombardment with 10 keV argon and krypton ions. Applied Surface Science 2000, 165, 279-287.
    連結:
  66. (80) Qian, H. X.; Zhou, W.; Zeng, X. R. Dwell time dependent morphological transition and sputtering yield of ion sputtered Sn. Journal of Physics D-Applied Physics 2010, 43, 345302.
    連結:
  67. (81) Medicherla, V. R. R.; Majumder, S.; Paramanik, D.; Varma, S. Formation of self-organized Ta nano-structures by argon ion sputtering of Ta foil: XPS and AFM study. Journal of Electron Spectroscopy and Related Phenomena 2010, 180, 1-5.
    連結:
  68. (82) Habenicht, S.; Bolse, W.; Lieb, K. P.; Reimann, K.; Geyer, U. Nanometer ripple formation and self-affine roughening of ion-beam-eroded graphite surfaces. Physical Review B 1999, 60, R2200-R2203.
    連結:
  69. (83) Frost, F.; Schindler, A.; Bigl, F. Roughness Evolution of Ion Sputtered Rotating InP Surfaces: Pattern Formation and Scaling Laws. Physical Review Letters 2000, 85, 4116-4119.
    連結:
  70. (84) Saeed, S. R.; Sinha, O. P.; Krok, F.; Zembok, T.; Pedrys, R.; Szymonski, M. Temperature-dependent surface modification of InSb(001) crystal by low-energy ion bombardment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009, 267, 2752-2756.
    連結:
  71. (85) Ziberi, B.; Frost, F.; Tartz, M.; Neumann, H.; Rauschenbach, B. Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion. Thin Solid Films 2004, 459, 106-110.
    連結:
  72. (86) Kumar, T.; Kumar, M.; Gupta, G.; Pandey, R.; Verma, S.; Kanjilal, D. Role of surface composition in morphological evolution of GaAs nano-dots with low-energy ion irradiation. Nanoscale Research Letters 2012, 7, 552.
    連結:
  73. (87) Facsko, S.; Dekorsy, T.; Koerdt, C.; Trappe, C.; Kurz, H.; Vogt, A.; Hartnagel, H. L. Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering. Science 1999, 285, 1551-1553.
    連結:
  74. (88) Xie, F. Y.; Gong, L.; Liu, X.; Tao, Y. T.; Zhang, W. H.; Chen, S. H.; Meng, H.; Chen, J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena 2012, 185, 112-118.
    連結:
  75. (89) Sulania, I.; Agarwal, D.; Tripathi, S. K.; Husain, M. Modifications on CdS thin films due to low-energy ion bombardment. Radiation Effects and Defects in Solids 2011, 167, 59-68.
    連結:
  76. (90) El-Said, A. S.; Meissl, W.; Simon, M. C.; Crespo López-Urrutia, J. R.; Gebeshuber, I. C.; Lang, M.; Winter, H. P.; Ullrich, J.; Aumayr, F. Surface nanostructures induced by slow highly charged ions on CaF2 single crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2007, 256, 346-349.
    連結:
  77. (92) Shanmugan, S.; Mutharasu, D. An effect of N+ ion bombardment on the properties of CdTe thin films. Radiation Physics and Chemistry 2012, 81, 201-207.
    連結:
  78. (93) Toma, A.; Buatier de Mongeot, F.; Buzio, R.; Firpo, G.; Bhattacharyya, S. R.; Boragno, C.; Valbusa, U. Ion beam erosion of amorphous materials: evolution of surface morphology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2005, 230, 551-554.
    連結:
  79. (94) Chauhan, R. S.; Agarwal, D. C.; Kumar, S.; Khan, S. A.; Kabiraj, D.; Sulania, I.; Avasthi, D. K.; Bolse, W. Nano/micro-structuring of oxide thin film under SHI irradiation. Vacuum 2011, 86, 96-100.
    連結:
  80. (95) Ritter, R.; Kowarik, G.; Meissl, W.; El-Said, A. S.; Maunoury, L.; Lebius, H.; Dufour, C.; Toulemonde, M.; Aumayr, F. Nanostructure formation due to impact of highly charged ions on mica. Vacuum 2010, 84, 1062-1065.
    連結:
  81. (96) Nakasa, K.; Zhang, Q. L.; Wang, R. G.; Kato, M. Nano-Indentation Characteristics of Surface Layer with Fine Conical Protrusions Formed by Sputter Etching of W-Cr Tool Steel. Journal of the Japan Institute of Metals 2009, 73, 870-877.
    連結:
  82. (97) Inoue, Y.; Yoshimura, Y.; Ikeda, Y.; Kohno, A. Ultra-hydrophobic fluorine polymer by Ar-ion bombardment. Colloids and Surfaces B: Biointerfaces 2000, 19, 257-261.
    連結:
  83. (98) Kaless, A.; Schulz, U.; Munzert, P.; Kaiser, N. NANO-motheye antireflection pattern by plasma treatment of polymers. Surface and Coatings Technology 2005, 200, 58-61.
    連結:
  84. (100) Chattopadhyay, S.; Huang, Y. F.; Jen, Y. J.; Ganguly, A.; Chen, K. H.; Chen, L. C. Anti-reflecting and photonic nanostructures. Materials Science and Engineering: R: Reports 2010, 69, 1-35.
    連結:
  85. (101) Hsin, C.-L.; Lee, W.-F.; Huang, C.-T.; Huang, C.-W.; Wu, W.-W.; Chen, L.-J. Growth of CuInSe2 and In2Se3/CuInSe2 Nano-Heterostructures through Solid State Reactions. Nano Letters 2011, 11, 4348-4351.
    連結:
  86. (102) Xu, J.; Lee, C.-S.; Tang, Y.-B.; Chen, X.; Chen, Z.-H.; Zhang, W.-J.; Lee, S.-T.; Zhang, W.; Yang, Z. Large-Scale Synthesis and Phase Transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 Core/Shell Nanowire Bundles. ACS Nano 2010, 4, 1845-1850.
    連結:
  87. (103) Peng, H.; Schoen, D. T.; Meister, S.; Zhang, X. F.; Cui, Y. Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires. Journal of the American Chemical Society 2006, 129, 34-35.
    連結:
  88. (104) Witte, W.; Kniese, R.; Eicke, A.; Powalla, M. In Influence of the GA Content on the Mo/Cu(In,Ga)Se2 Interface Formation, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, May 2006; 2006; pp 553-556.
    連結:
  89. (105) Witte, W.; Kniese, R.; Powalla, M. Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents. Thin Solid Films 2008, 517, 867-869.
    連結:
  90. (106) Álvarez-Garcı́a, J.; Marcos-Ruzafa, J.; Pérez-Rodrı́guez, A.; Romano-Rodrı́guez, A.; Morante, J. R.; Scheer, R. MicroRaman scattering from polycrystalline CuInS2 films: structural analysis. Thin Solid Films 2000, 361–362, 208-212.
    連結:
  91. (107) Oja, I.; Nanu, M.; Katerski, A.; Krunks, M.; Mere, A.; Raudoja, J.; Goossens, A. Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films 2005, 480–481, 82-86.
    連結:
  92. (109) Bradley, R. M.; Shipman, P. D. Spontaneous Pattern Formation Induced by Ion Bombardment of Binary Compounds. Physical Review Letters 2010, 105, 145501.
    連結:
  93. (110) Shipman, P. D.; Bradley, R. M. Theory of nanoscale pattern formation induced by normal-incidence ion bombardment of binary compounds. Physical Review B 2011, 84, 085420.
    連結:
  94. (112) Schön, G. High resolution Auger electron spectroscopy of metallic copper. Journal of Electron Spectroscopy and Related Phenomena 1972, 1, 377-387.
    連結:
  95. (113) Schön, G. ESCA studies of Cu, Cu2O and CuO. Surface Science 1973, 35, 96-108.
    連結:
  96. (114) Strohmeier, B. R.; Levden, D. E.; Field, R. S.; Hercules, D. M. Surface spectroscopic characterization of CuAl2O3 catalysts. Journal of Catalysis 1985, 94, 514-530.
    連結:
  97. (115) Kim, K. S.; Baitinger, W. E.; Amy, J. W.; Winograd, N. ESCA studies of metal-oxygen surfaces using argon and oxygen ion-bombardment. Journal of Electron Spectroscopy and Related Phenomena 1974, 5, 351-367.
    連結:
  98. (116) Holm, R.; Storp, S. ESCA Investigations of Ion Beam Effects on Surfaces. Physica Scripta 1977, 16, 442.
    連結:
  99. (117) Holm, R.; Storp, S. ESCA studies on changes in surface composition under ion bombardment. Appl. Phys. 1977, 12, 101-112.
    連結:
  100. (118) Binsma, J. J. M.; Giling, L. J.; Bloem, J. Phase relations in the system Cu2S-In2S3. Journal of Crystal Growth 1980, 50, 429-436.
    連結:
  101. (120) Tinoco, T.; Rincón, C.; Quintero, M.; Pérez, G. S. Phase Diagram and Optical Energy Gaps for CuInyGa1−ySe2 Alloys. physica status solidi (a) 1991, 124, 427-434.
    連結:
  102. (121) Yen, Y.-T.; Wang, Y.-C.; Chen, C.-W.; Tsai, H.-W.; Chen, Y.-Z.; Hu, F.; Chueh, Y.-L. Self-organized antireflection CuIn(S,Se)2 nano-protrusions on flexible substrates by ion erosion based on CuInS2 nanocrystal precursor inks. Applied Surface Science.
    連結:
  103. (122) Liu, Y.; Das, A.; Lin, Z.; Cooper, I. B.; Rohatgi, A.; Wong, C. P. Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells. Nano Energy 2014, 3, 127-133.
    連結:
  104. (123) Kapadia, R.; Fan, Z.; Takei, K.; Javey, A. Nanopillar photovoltaics: Materials, processes, and devices. Nano Energy 2012, 1, 132-144.
    連結:
  105. (124) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (version 43). Progress in Photovoltaics: Research and Applications 2014, 22, 1-9.
    連結:
  106. (125) Kapur, V. K.; Bansal, A.; Le, P.; Asensio, O. I. Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 2003, 431–432, 53-57.
    連結:
  107. (126) Kaelin, M.; Rudmann, D.; Tiwari, A. N. Low cost processing of CIGS thin film solar cells. Solar Energy 2004, 77, 749-756.
    連結:
  108. (127) Kaelin, M.; Rudmann, D.; Kurdesau, F.; Meyer, T.; Zogg, H.; Tiwari, A. N. CIS and CIGS layers from selenized nanoparticle precursors. Thin Solid Films 2003, 431–432, 58-62.
    連結:
  109. (128) Kessler, F.; Rudmann, D. Technological aspects of flexible CIGS solar cells and modules. Solar Energy 2004, 77, 685-695.
    連結:
  110. (129) Yen, Y.-T.; Wang, Y.-C.; Chen, Y.-Z.; Tsai, H.-W.; Hu, F.; Lin, S.-M.; Chen, Y.-J.; Lai, C.-C.; Liu, W.; Wang, T.-H.; Hong, H.-F.; Chueh, Y.-L. Large Scale and Orientation-Controllable Nanotip Structures on CuInS2, Cu(In,Ga)S2, CuInSe2, and Cu(In,Ga)Se2 by Low Energy Ion Beam Bombardment Process: Growth and Characterization. ACS Applied Materials & Interfaces 2014, 6, 8327-8336.
    連結:
  111. (131) Wang, D.; Wan, L.; Bai, Z.; Cao, Y. Mixed phases in p-type CuInSe2 thin films detected by using micro-Raman scattering spectroscopy. Applied Physics Letters 2008, 92, 211912.
    連結:
  112. (132) Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy 2001, 71, 325-346.
    連結:
  113. (133) Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Letters 2008, 9, 279-282.
    連結:
  114. (134) Wu, T.-T.; Hu, F.; Huang, J.-H.; Chang, C.-h.; Lai, C.-c.; Yen, Y.-T.; Huang, H.-Y.; Hong, H.-F.; Wang, Z. M.; Shen, C.-H.; Shieh, J.-M.; Chueh, Y.-L. Improved Efficiency of a Large-Area Cu(In,Ga)Se2 Solar Cell by a Nontoxic Hydrogen-Assisted Solid Se Vapor Selenization Process. ACS Applied Materials & Interfaces 2014, 6, 4842-4849.
    連結:
  115. (135) Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009, 9, 1139-1146.
    連結:
  116. (136) Baffou, G.; Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser & Photonics Reviews 2013, 7, 171-187.
    連結:
  117. (137) Baffou, G.; Quidant, R.; García de Abajo, F. J. Nanoscale Control of Optical Heating in Complex Plasmonic Systems. ACS Nano 2010, 4, 709-716.
    連結:
  118. (138) Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies. Small 2011, 7, 169-183.
    連結:
  119. (139) Croissant, J.; Zink, J. I. Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating. J. Am. Chem. Soc. 2012, 134, 7628-7631.
    連結:
  120. (140) Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 2012, 3, 618.
    連結:
  121. (141) Cao, L.; Barsic, D. N.; Guichard, A. R.; Brongersma, M. L. Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes. Nano Lett. 2007, 7, 3523-3527.
    連結:
  122. (142) Wang, K.; Schonbrun, E.; Steinvurzel, P.; Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat Commun 2011, 2, 469.
    連結:
  123. (143) Wang, C. G.; Irudayaraj, J. Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens. Small 2010, 6, 283-289.
    連結:
  124. (144) Ramasamy, M.; Lee, S. S.; Yi, D. K.; Kim, K. Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria. J. Mat. Chem. B 2014, 2, 981-988.
    連結:
  125. (145) Chen, W.; Lu, Y.; Dong, W.; Chen, Z.; Shen, M. Plasmon mediated visible light photocurrent and photoelectrochemical hydrogen generation using Au nanoparticles/TiO2 electrode. Materials Research Bulletin 2014, 50, 31-35.
    連結:
  126. (146) Sarina, S.; Bai, S.; Huang, Y. M.; Chen, C.; Jia, J. F.; Jaatinen, E.; Ayoko, G. A.; Bao, Z.; Zhu, H. Y. Visible light enhanced oxidant free dehydrogenation of aromatic alcohols using Au-Pd alloy nanoparticle catalysts. Green Chem. 2014, 16, 331-341.
    連結:
  127. (147) Mukherjee, S.; Zhou, L. A.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-Electron-Induced Dissociation of H-2 on Gold Nanoparticles Supported on SiO2. J. Am. Chem. Soc. 2014, 136, 64-67.
    連結:
  128. (149) Chen, J.-J.; Wu, J. C. S.; Wu, P. C.; Tsai, D. P. Improved Photocatalytic Activity of Shell-Isolated Plasmonic Photocatalyst Au@SiO2/TiO2 by Promoted LSPR. The Journal of Physical Chemistry C 2012, 116, 26535-26542.
    連結:
  129. (150) Sahu, S. R.; Devi, M. M.; Mukherjee, P.; Sen, P.; Biswas, K. Optical Property Characterization of Novel Graphene-X (X=Ag, Au and Cu) Nanoparticle Hybrids. J. Nanomater. 2013.
    連結:
  130. (151) Uppal, M. A.; Ewing, M. B.; Parkin, I. P. One-Pot Synthesis of Core-Shell Silver-Gold Nanoparticle Solutions and Their Interaction with Methylene Blue Dye. Eur. J. Inorg. Chem. 2011, 4534-4544.
    連結:
  131. (152) Hsieh, J. H.; Li, C.; Wu, Y. Y.; Jang, S. C. Optical studies on sputter-deposited Ag–SiO2 nanoparticle composites. Thin Solid Films 2011, 519, 7124-7128.
    連結:
  132. (153) Ferrara, D. W.; MacQuarrie, E. R.; Nag, J.; Kaye, A. B.; Haglund, R. F. Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites. Appl. Phys. Lett. 2011, 98.
    連結:
  133. (154) Li, Y. F.; Zou, Y. P. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 2008, 20, 2952-2958.
    連結:
  134. (155) Liang, Y. Y.; Yu, L. P. A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Accounts Chem. Res. 2010, 43, 1227-1236.
    連結:
  135. (156) Wong, W. Y.; Wang, X. Z.; He, Z.; Chan, K. K.; Djurisic, A. B.; Cheung, K. Y.; Yip, C. T.; Ng, A. M. C.; Xi, Y. Y.; Mak, C. S. K.; Chan, W. K. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s. J. Am. Chem. Soc. 2007, 129, 14372-14380.
    連結:
  136. (157) Wagner, S.; Bridenbaugh, P. M. Multicomponent tetrahedral compounds for solar cells. Journal of Crystal Growth 1977, 39, 151-159.
    連結:
  137. (158) Álvarez-Garcı́a, J.; Pérez-Rodrı́guez, A.; Romano-Rodrı́guez, A.; Morante, J. R.; Calvo-Barrio, L.; Scheer, R.; Klenk, R. Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition. Journal of Vacuum Science & Technology A 2001, 19, 232-239.
    連結:
  138. (159) Kuo, K.-T.; Liu, D.-M.; Chen, S.-Y.; Lin, C.-C. Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. Journal of Materials Chemistry 2009, 19, 6780-6788.
    連結:
  139. (160) Li, T.-L.; Teng, H. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. Journal of Materials Chemistry 2010, 20, 3656-3664.
    連結:
  140. (162) Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews 2006, 35, 1084-1094.
    連結:
  141. (163) Lapotko, D. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt. Express 2009, 17, 2538-2556.
    連結:
  142. (164) Harris, N.; Ford, M. J.; Cortie, M. B. Optimization of Plasmonic Heating by Gold Nanospheres and Nanoshells. The Journal of Physical Chemistry B 2006, 110, 10701-10707.
    連結:
  143. (165) Quiggle, D.; Fenske, M. R. Vapor—Liquid Equilibria of Methylcyclohexane—Toluene Mixtures. J. Am. Chem. Soc. 1937, 59, 1829-1832.
    連結:
  144. (166) Reichardt, C., In Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: 2004, pp 471-507.
    連結:
  145. (167) Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in Nanoparticle Synthesis. Chemistry of Materials 2013, 25, 1465-1476.
    連結:
  146. (168) Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar Vapor Generation Enabled by Nanoparticles. ACS Nano 2012, 7, 42-49.
    連結:
  147. (169) Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research 2004, 38, 3001-3008.
    連結:
  148. (170) Li, F. B.; Li, X. Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis a-General 2002, 228, 15-27.
    連結:
  149. (171) Macyk, W.; Kisch, H. Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes. Chem.-Eur. J. 2001, 7, 1862-1867.
    連結:
  150. (172) Chiarello, G. L.; Aguirre, M. H.; Selli, E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. Journal of Catalysis 2010, 273, 182-190.
    連結:
  151. (173) Anpo, M.; Chiba, K.; Tomonari, M.; Coluccia, S.; Che, M.; Fox, M. A. PHOTOCATALYSIS ON NATIVE AND PLATINUM-LOADED TIO2 AND ZNO CATALYSTS-ORIGIN OF DIFFERENT REACTIVITIES ON WET AND DRY METAL-OXIDES. Bull. Chem. Soc. Jpn. 1991, 64, 543-551.
    連結:
  152. (174) Akaki, Y.; Nakamura, S.; Nomoto, K.; Yoshitake, T.; Yoshino, K. Effect of annealing for CuInS2 thin films prepared from Cu-rich ternary compound. physica status solidi (c) 2009, 6, 1030-1033.
    連結:
  153. (177) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695-2700.
    連結:
  154. (178) Yen, J.; Nicol, M. Temperature dependence of the ruby luminescence method for measuring high pressures. Journal of Applied Physics 1992, 72, 5535-5538.
    連結:
  155. (181) Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Sensitive Solution-Processed Bi2S3 Nanocrystalline Photodetectors. Nano Letters 2008, 8, 4002-4006.
    連結:
  156. (182) Yin, Z.; Chen, B.; Bosman, M.; Cao, X.; Chen, J.; Zheng, B.; Zhang, H. Au Nanoparticle-Modified MoS2 Nanosheet-Based Photoelectrochemical Cells for Water Splitting. Small 2014, 10, 3537-3543.
    連結:
  157. (183) Hong, Q.; Cao, Y.; Xu, J.; Lu, H.; He, J.; Sun, J.-L. Self-Powered Ultrafast Broadband Photodetector Based on p–n Heterojunctions of CuO/Si Nanowire Array. ACS Applied Materials & Interfaces 2014, 6, 20887-20894.
    連結:
  158. (184) Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters 2013, 102, 012111.
    連結:
  159. (185) Takeda, A.; Oku, T.; Suzuki, A.; Kikuchi, K.; Kikuchi, S. Fabrication and characterization of inorganic-organic hybrid solar cells based on CuInS2. Journal of the Ceramic Society of Japan 2009, 117, 967-969.
    連結:
  160. (186) Chen, C.; Ali, G.; Yoo, S. H.; Kum, J. M.; Cho, S. O. Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. Journal of Materials Chemistry 2011, 21, 16430-16435.
    連結:
  161. (187) Yen, Y.-T.; Chen, C.-W.; Fang, M.; Chen, Y.-Z.; Lai, C.-C.; Hsu, C.-H.; Wang, Y.-C.; Lin, H.; Shen, C.-H.; Shieh, J.-M.; Ho, J. C.; Chueh, Y.-L. Thermoplasmonics-assisted nanoheterostructured Au-decorated CuInS2 nanoparticles: Matching solar spectrum absorption and its application on selective distillation of non-polar solvent systems by thermal solar energy. Nano Energy 2015, 15, 470-478.
    連結:
  162. (1) Greenwood, N. N.; Earnshaw, A., Chemistry of the Elements, Butterworth-Heinemann: Boston, Mass, 1997.
  163. (3) Chopra, K. L.; Paulson, P. D.; Dutta, V. Thin-film solar cells: an overview. Progress in Photovoltaics: Research and Applications 2004, 12, 69-92.
  164. (4) Pamplin, B. R.; Kiyosawa, T.; Masumoto, K. Ternary chalcopyrite compounds. Progress in Crystal Growth and Characterization 1979, 1, 331-387.
  165. (18) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 2015, 23, 1-9.
  166. (19) Nobelprize.org. Albert Einstein - Facts. http://www.nobelprize.org/nobel_prizes/physics/laureates/1921/einstein-facts.html (accessed 14 Jul, 2015).
  167. (20) Perlin, J. The silicon solar cell turns 50. http://www.nrel.gov/education/pdfs/educational_resources/high_school/solar_cell_history.pdf (accessed 14 Jul, 2015).
  168. (22) Mickelsen, R. A.; Chen, W. S. In Development of a 9.4% efficient thin film CuInSe2/CdS solar cell, Proceedings of the 15th IEEE PVSC, Orlando, Orlando, 1981; pp 800-803.
  169. (25) Abushama, J.; Noufi, R.; Johnston, S.; Ward, S.; Wu, X. In Improved performance in CuInSe2 and surface-modified CuGaSe2 solar cells, Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, 3-7 Jan. 2005; 2005; pp 299-302.
  170. (33) Yu, K.; Ng, P.; Ouyang, J.; Zaman, M. B.; Abulrob, A.; Baral, T. N.; Fatehi, D.; Jakubek, Z. J.; Kingston, D.; Wu, X.; Liu, X.; Hebert, C.; Leek, D. M.; Whitfield, D. M. Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Applied Materials & Interfaces 2013, 5, 2870-2880.
  171. (36) Singh, V. P.; Rajaputra, S.; Piao, L.; Phok, S.; Guduru, S. In Fabrication and characterization of CdS/CIS nanowire heterojunctions, Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, 11-16 May 2008; 2008; pp 1-5.
  172. (39) Echlin, P.; Fiori, C. E.; Goldstein, J.; Joy, D. C.; Newbury, D. E., Advanced Scanning Electron Microscopy and X-Ray Microanalysis, Springer US: 2013.
  173. (40) Echlin, P., Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, Springer: 2011.
  174. (43) Perkampus, H.-H.; Grinter, H.-C.; Threlfall, T., UV-VIS Spectroscopy and its Applications, Springer: 1992.
  175. (68) Shaviv, E.; Schubert, O.; Alves-Santos, M.; Goldoni, G.; Di Felice, R.; Vallée, F.; Del Fatti, N.; Banin, U.; Sönnichsen, C. Absorption Properties of Metal–Semiconductor Hybrid Nanoparticles. ACS Nano 2011, 5, 4712-4719.
  176. (91) Facsko, S.; Meissl, W.; Heller, R.; Wilhelm, R.; El-Said, A. S.; Kowarik, G.; Ritter, R.; Aumayr, F. Nanostructures induced by highly charged ions on CaF2 and KBr. Journal of Physics: Conference Series 2009, 194, 012060.
  177. (99) Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K. Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society B: Biological Sciences 2006, 273, 661-667.
  178. (108) Bradley, R. M.; Harper, J. M. E. Theory of ripple topography induced by ion bombardment. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1988, 6, 2390-2395.
  179. (111) Laboratory, N. P. Sputter Yield Values. http://www.npl.co.uk/science-technology/surface-and-nanoanalysis/services/sputter-yield-values (accessed July).
  180. (119) Dittrich, H.; Karl, N.; Kück, S.; Schock, H. W.; Madelung, O., In Ternary Compounds, Organic Semiconductors; Madelung, O.; Rössler, U.; Schulz, M., Eds; Springer Berlin Heidelberg: 2000; Chapter 73, pp 1-3.
  181. (130) Liu, C.-H.; Chen, C.-H.; Chen, S.-Y.; Yen, Y.-T.; Kuo, W.-C.; Liao, Y.-K.; Juang, J.-Y.; Kuo, H.-C.; Lai, C.-H.; Chen, L.-J.; Chueh, Y.-L. Large Scale Single-Crystal Cu(In,Ga)Se2 Nanotip Arrays For High Efficiency Solar Cell. Nano Letters 2011, 11, 4443-4448.
  182. (148) Halas, N. J.; Neumann, O.; Urban, A.; Hogan, N.; Fang, Z. Y.; Pimpinelli, A.; Lal, S.; Nordlander, P. Solar vapor generation enabled by nanoparticles. Abstr. Pap. Am. Chem. Soc. 2013, 246.
  183. (161) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat Mater 2008, 7, 442-453.
  184. (175) Nath, D. N.; Lu, M.; Chong Hee, L.; Lee, E.; Arehart, A.; Yiying, W.; Rajan, S. In Electron transport in large-area epitaxial MoS2, Device Research Conference (DRC), 2014 72nd Annual, 22-25 June 2014; 2014; pp 89-90.
  185. (176) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials 2012, 22, 1385-1390.
  186. (179) Park, C. J.; Kwon, Y. H.; Lee, Y. H.; Kang, T. W.; Cho, H. Y.; Kim, S.; Choi, S.-H.; Elliman, R. G. Origin of luminescence from Si−-implanted (11¯02) Al2O3. Applied Physics Letters 2004, 84, 2667-2669.
  187. (180) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nano 2012, 7, 363-368.