Title

二氧化矽/銀核殼形結構之合成與其表面電漿子共振效應研究

Translated Titles

Synthesis of SiO2/Ag core-shell structure : Surface Plasmon Resonance Effect

DOI

10.6843/NTHU.2011.00321

Authors

陳廣修

Key Words

核殼 ; 表面電漿共振 ; 光學 ; 二氧化矽 ; 銀

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

施漢章;葉均蔚

Content Language

繁體中文

Chinese Abstract

本實驗利用表面修飾法(surface decorated method)與種子成長法(seed-mediated growth technique) 在適當的氫氧化鈉NaOH參數下,成功合成出兩種不同形貌的核殼形結構:(1) 粒徑大且獨立性佳的銀顆粒(isolated particles)披覆在二氧化矽微球上;(2) 粒徑小且均勻的銀殼 (incompleted shell)披覆在二氧化矽微球上。   利用場發射掃描式電子顯微鏡(FESEM)與穿透式電子顯微鏡(TEM)觀察其表面形貌,數據分析其銀之粒徑大小與披覆密度。高解析穿透電子顯微鏡(HRTEM) & X光繞射分析儀(XRD)鑑定銀成長晶面,確認銀成功披覆在二氧化矽微球上;並透過X光電子能譜儀(XPS)鑑定銀與二氧化矽載體間具有特殊的binding energy化學位移,證實銀披覆在二氧化矽微球上後,電子由銀轉移至矽與氧,進一步確定銀在二氧化矽的界面為化學鍵結   不同形貌的二氧化矽/銀核殼形結構,呈現多樣的光學特性,研究其表面電漿子的共振(SPR)理論,利用紫外-可見光光吸收實驗(UV-Vis spectrum),觀察其表面電漿共振吸收峰,獨立性佳的銀顆粒隨著粒徑變大,SPR吸收峰紅移;均勻性佳的銀殼隨著銀殼的變厚而藍移,兩者呈現完全不同的光學特性。運用Mie theory與電偶極耦合(dipolar coupling) 效應等理論,成功的將核殼形結構之表面形貌與其特殊的光學特性做結合。   在適當的核殼參數下,模擬出兩種模型(1) 銀顆粒,改變其粒徑與披覆密度參數;(2) 銀殼,改變厚度參數,兩種型態的核殼形結構,與其個別的光學模擬,與實驗有相當大程度的一致性。

English Abstract

Abstract The SiO2/Ag core-shell structure is synthesized via surface decorated method and seed-mediated technique. The morphology of silver layers on silica spheres can be accurately controlled by adjusting the quantity of NaOH. The two different structures are (1) larger and isolated silver particles on the silica spheres; (2) ultrafine and uniform silver nanoparticles on the silica spheres. The morphology of the core-shell structure was observed by scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). Use HR-TEM and X-ray diffraction pattern (XRD) to identify the crystal plane of silver particles. Furthermore, the X-ray photoelectron spectroscopy (XPS) experiment exhibits the chemical shift of binding energy. The results indicated the electrons were transferred from Ag particles to SiO2 confirming the chemical absorption between the silver particles and silica spheres. The surface plasmon resonance (SPR) peak depended on the morphology of SiO2/Ag core-shell structure and was observed by ultraviolet / visible spectroscopy (UV-Vis) and TEM. The Mie scattering theory and the dipolar coupling effect of neighboring silver particles as a whole may serve as the mechanism of optical properties. Furthermore, the observed SPR band could be tailored as expected by the modeling of optical properties. By adjusting appropriate parameters: (1) various size and coating density of silver particles; (2) various thickness of silver shell, a core-shell structure models and optical modes corresponding to the experimental results can be designed.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    連結:
  2. [4] Paul Mulvaney, ”Surface Plasmon Spectroscopy of Nanosized Metal Particles”, Langmuir, 12 (1996), 788
    連結:
  3. [5] Martin Moskovits, “Surface-Enhanced Spectroscopy”, Rev. Mod. Phys, 57 (1985), 783
    連結:
  4. [7] 吳民耀、劉威志, ”表面電漿子理論與模擬”, 物理雙月刊, 二十八卷二期 (2006), 486
    連結:
  5. [8] S. Kawata, “ Near-Field Optics and Surface Plasmon Polaritons”, Springer (2001)
    連結:
  6. [9] T. J. Silva, S. Schultz,” A scanning near‐field optical microscope for the imaging of magnetic domains in reflection”, Rev. Sci. Instrum, 67, (1996), 715
    連結:
  7. [10] T. Andrew Taton1, Chad A. Mirkin*, Robert L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes, Science, 289 (2000), 1757
    連結:
  8. [11] David A Schultza, ”Plasmon resonant particles for biological detection”, Current Opinion in Biotechnology, 14 (2003), 13
    連結:
  9. [12] F. Patolsky, A. Lichtenstein, I. Willner*,” Electronic Transduction of DNA Sensing Processes on Surfaces: Amplification of DNA Detection and Analysis of Single-Base Mismatches by Tagged Liposomes”, J. Am. Chem. Soc., 123 (2001), 5194
    連結:
  10. [13] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, and Scherer A, ”Surface plasmon enhanced super bright InGaN light emitter”, Phys. Status Solidi, 2 (2005), 2841
    連結:
  11. [14] D. M. Yeh, C. F Huang, C. Y. Chen, Y. C Lu, C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode”, Phys. Lett, 91 (2007), 171103
    連結:
  12. [15] K. Ishikawa, C.J Wen, K. Yamada, T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance”, Journal of Chemical Engineering of Japan 37 (2004), 645
    連結:
  13. [16] C.F. Bohren, D.G. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley, New York, 1984, (Chapters 9 and 12).
    連結:
  14. [18] S. S. Martinos, “Optical Absorption Spectra for Silver Spherical Particles”, Phys. Rev. B 39 (1989) 1363
    連結:
  15. [19] Richard D. Averitt, Sarah L. Westcott, Naomi J. Halas, “Linear Optical Properties of Gold Nanoshells”, Optics InfoBase, 16 (1999) 1824
    連結:
  16. [20] W. Stober, A. Fink, E. Bohn, ”Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Interface Sci. ", 26 (1968), 62
    連結:
  17. [22] K. S. Chou, C. Y. Ren, “Synthesis of nanosized silver particles by chemical reduction method”, Mater. Chem. and Phys., 64 (2000), 241
    連結:
  18. [24] K. L. Kelly, E. Coronado, L. L. Zhao, George C, Schatz*, ”The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, 107 (2003), 668
    連結:
  19. [25] 曾賢德, ”金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作”,物理雙月刊, 32卷2期, (2010), 126
    連結:
  20. [26] Prashant K. Jain, Mostafa A. El-Sayed, ” Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing”, Nano Lett., 8 (2008), 4347
    連結:
  21. [28] M. Zhu, G. Qian, G. Ding, Z. Wang, M. Wang, “Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres”, Mater. Chem. and Phy., 96 (2006) 489
    連結:
  22. [30] 陳貞志,“單一粒徑分佈二氧化矽膠體和銀-二氧化矽核-殼結構奈米粒子的製備及應用”,國立清華大學化學工程系博士論文 (2007)
    連結:
  23. [31] S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas, ”Nanoengineering of Optical Resonances”, Chem. Phys. Lett., 288 (1998), 243
    連結:
  24. [33] Z. J. Jiang, C. Y. Liu*, “Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere”, J. Phys. Chem. B, 107 (2003), 12411
    連結:
  25. [34] Z. J. Jiang, C. Y. Liu*, Y. Liu, “Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution”, Appl. Surf. Sci., 233 (2004) 135
    連結:
  26. [35] Z. J. Jiang, C. Y. Liu, Y. Liu, Z. Y Zhang, Y. J. Li, ”Fabrication of Silver Nanoshell on Functionalized Silica Sphere through Layer-by-Layer Technique”, Chem. Lett., 32 (2003), 668
    連結:
  27. [36] J. C. Floresa, V. Torresa, M. Popaa, D. Crespoa,” Variations in morphologies of silver nanoshells on silica spheres”, Colloid Surf. A, 330,20, 2008, 86
    連結:
  28. [37] J.C. Floresa, V. Torresa, M. Popaa, b, D. Crespoa and J.M. Calderón-Moreno, “Preparation of core–shell nanospheres of silica–silver: SiO2@Ag”, J. Non-Cryst. Solids, 354 (2008), 5435
    連結:
  29. [38] S. Tang, Y. Tang, S. Zhu, H. Lu, X. Meng, ”Synthesis and characterization of silica–silver core–shell composite particles with uniform thin silver layers”, J. Solid State Chem., 180 (2007), 2871
    連結:
  30. [39] S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas*, ”Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces”, Langmuir, 14 (1998), 5396
    連結:
  31. [40] K. Nischala, Tata N. Rao, Neha Hebalkar, “Silica–silver core–shell particles for antibacterial textile application”, Colloid Surf. B-Biointerfaces, 82 (2011), 203
    連結:
  32. [41] T. C. Preston, R. Signorell*, ”Growth and Optical Properties of Gold Nanoshells Prior to the Formation of a Continuous Metallic Layer”, ACS Nano, 3 (2009), 3696
    連結:
  33. [42] Q. Lin, Z. Sun*, ”Optical Extinction Properties of Aggregated Ultrafine Silver Nanoparticles on Silica Nanospheres ”, J. Phys. Chem. C, 115 (2011), 1474 
    連結:
  34. [43] N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance”, Quantum Electronics, 38 (2008), 504 
    連結:
  35. [44] Jackson, John D.” Classical Electrodynamics 3rd”(1998) , Wiley.
    連結:
  36. [46] G. Hersberg, “Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules”, Nostrand Reihold Company Inc., New York, 1966 
    連結:
  37. [47] X.K. Meng, S.C. Tanga and S. Vongehr, “A Review on Diverse Silver Nanostructures”, J. Mater. Sci. Technol., 26 (2010), 487
    連結:
  38. 第七章 參考文獻
  39. [2] 陳東煌, ”複合奈米粒子的製備與應用”, 化工技術, 120, (2003), 180
  40. [3] F. E. Wanger, S. Haslbeck, L. Stievano,, S. Calogero, Q. A. Pankhurst, K. P. Martinek, “Before striking gold in gold-ruby glass”, Nature, 407 (2000), 691
  41. [6] “表面電漿子技術專題”, 工業材料雜誌, 261期, (2008)
  42. [17] U. Kreibig, M. Vollmer, “Optical Properties of Metal Clusters”, Springer-Verlag, 1995.
  43. [21] 李賢學, ”化學還原法製備奈米銀及其應用”,國立清華大學化學工程系博士論文 (2005)
  44. [23] S. Kalele1, S. W. Gosavi1, J. Urban, S. K. Kulkarni1, “Nanoshell particles: synthesis, properties and applications”, Current Science, 91 (2006), 1038
  45. [27] G. Mie, ”Mie Theory”, Ann. Phys, 25, 377 (1908).
  46. [29] U. Kreibig, M. Vollmer, “Optical Properties of Metal Clusters”, 25, (1995), Springer: Berlin
  47. [32] A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang and Z. Gao, “Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction”, Chem. Commun., 4, (2002), 350
  48. [45] 汪建民, “材料分析”, 中國材料科學學會, 1998, 355
Times Cited
  1. 梁藝礬(2012)。合成二氧化矽/銀核殼結構及其表面電漿子共振引發之光催化效應研究。清華大學材料科學工程學系學位論文。2012。1-86。