Title

具濾波功能之近紅外光鍺光偵測器

Translated Titles

Wavelength Filtering Near-infrared Ge Photodetectors

Authors

謝佳倩

Key Words

濾波器 ; 鍺 ; 光偵測器 ; Filter ; Ge ; Photodector

PublicationName

清華大學光電工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

李明昌

Content Language

繁體中文

Chinese Abstract

在本研究中,利用波導模態共振的理論結合金屬光柵,該金屬光柵能夠選擇性地將垂直入射光耦合到波導層,用於增強特定波長之光穿透至鍺層,同時藉由調整金屬光柵週期便能達到濾波效果,且該光學元件設計於近紅外光波段,濾波範圍涵蓋1220nm~1500nm。我們成功將其製作在鍺光偵測器上,僅需測得光訊號便能作出不同波長的選擇性偵測,達到光電整合之目的。在週期設計840nm與860nm分別相對於共振波長1315nm與1350nm其半高寬皆小於15nm。

English Abstract

In the thesis, we propose a new device structure using waveguide metallic photonic crystals monolithically integrated on a Ge photodiodes to implement a wavelength selective NIR photodetector. This metallic nanoplasmonic grating is capable of selectively coupling normally incident light to the waveguide layer for enhancing light transmission to the bottom Ge photodiodes at a specific wavelength, which can be controlled by the grating period. Without changing the thickness of device layers, this structure can be utilized for implementing an on-chip spectrometer. The grating period is designed from 750 nm to 950 nm, and the wavelength shift from 1.22 μm to 1.5 μm. The FWHM of the transmission band is less than 30 nm. By measuring the responsivity, we have successfully demonstrated devices at grating period 840nm and 860nm, corresponding to the resonance wavelength at 1315nm and 1350nm respectively.

Topic Category 電機資訊學院 > 光電工程研究所
工程學 > 電機工程
Reference
  1. [1] M. T. Bohr, “Interconnect Scaling - The Real Limiter to High Performance ULSI,” IEEE Int. Electron Devices Meeting 241-244 (1995).
    連結:
  2. [7] 田仲達,“利用自我對準微接合技術製作矽鍺異質接面波導光偵測器,”國立清華大學光電工程研究所(民國101年)
    連結:
  3. [8] 黃鐘億,“具有低溫成長氮化鎵/氮化鋁插入層之氮化鎵光偵測器光電特性比較之研究,”國立成功大學光電科學與工程研究所(民國96年)
    連結:
  4. [10] Hessel, and A. A. Oliner, “A new theory of Wood’ s anomalies on optical gratings,” Appl. Opt., vol. 10, pp. 1275-1296, (1965).
    連結:
  5. [11] 賴國瑋,“波導模態共振之元件應用,”國立交通大學電子工程學系電子研究所(民國100年)
    連結:
  6. [12] D.Shin, “Resonance properties of periodic waveguides and their applications,”Ph.D. dissertation, the Universatity of Texas at Arlington, (1999).
    連結:
  7. [14] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 08/14/print, (2003).
    連結:
  8. [15] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, (2004).
    連結:
  9. [16] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968, (1968).
    連結:
  10. [17] 張家齊,“單石化平面光波光路之導波模態 共振濾波器,” 國立中央大學(民國97年)
    連結:
  11. [18] Zhang, Xinping; Feng, Shengfei; Zhang, Jian; Zhai, Tianrui; Liu, Hongmei; Pang, Zhaoguang. "Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals."Sensors 12, no. 9: 12082-12097, (2012).
    連結:
  12. [19] Feng, S. "Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals." Journal of Nanophotonics 6(1): 063513, (2012).
    連結:
  13. [20] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag, vol. 14, pp. 302-307, (1966).
    連結:
  14. [21] J.-N. Hwang and F.-C. Chen, "Effect of the conductivity profile on the stability of the ADI-FDTD method with split-field PML," Asia-Pacific Microwave Conference pp. 945-948, (2006),.
    連結:
  15. [22] J.-P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, vol. 44, pp. 110-117, (1996).
    連結:
  16. [23] Kaplan, A. F., et al. "High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography." Applied Physics Letters 99(14): 143111, (2011).
    連結:
  17. [24] 施哲儒,“鎳鍺化物接觸之N + -P鍺淺接面及接觸電阻之研究,”國立交通大學電子工程學系電子研究所(民國102年)
    連結:
  18. [2] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-Chip Optical Interconnect,” Proc. IEEE 97, 1186-1198 (2009).
  19. [3] Xiaochen Sun, “Ge-on-Si Light-Emitting Materials and Devices for Silicon Phoonics,” B.S. Physics, Peking University, (2004)
  20. [4] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications,” IEEE Int. Electron Devices Meeting 33.8 (2012).
  21. [5] Edward D,“Handbook of optical Constants of solids,” Academic press NY, Palik (1985)
  22. [6] Xi Luo, “Transistor-Based Ge/SOI Photodetector for Integrated Silicon Photonics,” Electrical Engineering and Computer Sciences University of California at Berkeley, (2011) .
  23. [9] R. W. Wood, “Remarkable spectrum from a diffraction grating,” Philos. Mag., vol. 4 , pp. 396-402, (1902).
  24. [13] Sharon,D.Rosenblatt, and A.A. Friesem,“Resonant grating-waveguide structures for visible and near-infared radiation,”J.Opt.Soc.Am.A, vol.14,2985, (1997).