Title

含氧化錳複合氣凝膠在超級電容器之應用

Translated Titles

Applications of Manganese Oxide Containing Composite Aerogels in Supercapacitors

Authors

林佑勳

Key Words

超級電容器 ; 氧化錳 ; 氣凝膠 ; supercapacitor ; manganese oxide ; aerogel

PublicationName

清華大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

呂世源

Content Language

繁體中文

Chinese Abstract

本研究成功第一個採用非金屬烷氧化物為前驅物,經溶膠-凝膠法合成出氧化錳氣凝膠,經XRD鑑定圖譜可知其為hausmannite結構的Mn3O4晶相,其比表面積可達79m2/g。經300℃熱處理之氧化錳氣凝膠經循環伏安法測試,比電容值於掃描速率25mV/s、電解質為0.5 M Na2SO4溶液、操作電位0.1V~0.9V vs. Ag/AgCl下可達122F/g,其CV圖形接近矩形,呈現良好之電容可逆性。將不同熱處理溫度之氧化錳氣凝膠經過2000圈循環伏安法做長效性測試,比電容值最多衰退4%,顯示其擁有極佳之穩定長效性。 為了改善氧化錳氣凝膠較低的比表面積,本研究首先採用高比表面積之氧化錫氣凝膠(比表面積317m2/g)為骨架基底,於孔洞結構中,採電化學方式,成長氧化錳,作為超級電容之電極研究。當以氧化錫氣凝膠為骨架,定電位2V成長氧化錳之氧化錳/氧化錫氣凝膠複合電極,比電容值於上述相同之電容操作條件下可達253F/g,循環伏安圖形接近矩形,呈現極佳之電容可逆性。 為了改善骨架基底之導電性,進而採以高導電性(片電阻0.00148Ω/□)碳氣凝膠(比表面積577m2/g)為骨架,定電位1.5V成長氧化錳之氧化錳/碳氣凝膠複合電極,比電容值於上述之相同操作條件下可高達503F/g,經過六千圈長效穩定性測試,比電容值僅僅衰退0.99%,具備極佳之長效穩定性。利用超高掃描速率500mV/s做循環伏安測試,比電容值為243F/g,相較於25mV/s之比電容值,仍維持62.8%,且能保持極佳的可逆性,顯示以此電極作為超級電容時,於高速充放電的過程中,仍可維持極佳的比電容值與電容表現。除此之外,經EIS分析得知,此氧化錳/碳氣凝膠複合電極具有理想電容行為,並經循環伏安法計算,得知其提供了相當好的能量密度與功率密度,分別為21.6Wh/kg與48.5kW/kg,於下世代超級電容器之設計需求,提供了一個低成本,高效能之材料選擇。

English Abstract

Manganese oxide aerogels were successfully synthesized with an epoxide addition procedure by using MnCl2‧4H2O as the precursor. The as-prepared aerogels possessed the crystalline phase of hausmannite of Mn3O4 and a BET specific surface area of 79m2/g. After heat treatment at 300 oC, the aerogels gave specific capacitances (SC) of up to 122F/g in 0.5M Na2SO4 solution, at a scan rate of 25mV/s, and within the window of 0.1~0.9V vs. Ag/AgCl. The resulting cyclic voltammetry (CV) loops appeared rectangular, implying high reversibility. After 2000 cycles of CV scans, the aerogels showed excellent cycle stability, retaining at least 96% of the maximum SC value. In order to improve on the issue of low electrical conductivity of manganese oxides, tin oxide aerogels (317m2/g) and carbon aerogels (577m2/g) of high specific surface areas and better electrical conductivities were used as the porous template to accommodate the functioning manganese oxides. Manganese oxides were electrodeposited into the aerogel templates with a simple 2-electrode potentiostatic procedure operated at different potentials. These composite electrodes, possessing high electrical conductivity backbone and rich redox reactions of transition metal oxides were found promising for supercapacitors. The SC of the manganese oxide (deposited at 2V)/tin oxide aerogel composite electrode was 253F/g, a significant enhancement over that of the plain manganese oxide aerogel, mainly because of the enlarged specific surface area provided by the tin oxide aerogel template. To seek further improvement, carbon aerogels of high conductivity (0.00148Ω/□) and high surface area were used as the template for manganese oxides. The SC value of this MnOx/CA, with MnOx deposited at 1.5 V, was as high as 503F/g, and retained 99% of the maximum SC value after 6000 cycles of CV scans, indicating the further boost in SC and excellent cycle stability. The SC value of this composite electrode remained high at 243F/g even at a very high scan rate of 500mV/s, retaining 62.8% of the SC values obtained at a scan rate of 25mV/s, and achieving a high specific energy density of 21.6Wh/kg and a high specific power density of 48.5kW/kg. This work demonstrates the advantages of using composite electrodes for the next-generation supercapacitors.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. Baumann T. F., Kucheyev S. O., Gash A. E., and Satcher J. H. Jr., “Facile Synthesis of a Crystalline High-Surface-Area SnO2 aerogel,” Adv. Mater., 17, 1546-1548 (2005)
    連結:
  2. Brossurd L. and Hunt J. Y., “Influence of Iron Impurity on the Time Dependence of the Hydrogen Evolution Reaction on Platinum Cathodes During Electrolysis of 30 w/o KOH,” J. appl. Electrochem., 19, 882-888 (1989)
    連結:
  3. Brousse Thierry, Toupin M., Dugas R., Athouël L., Crosnier O., and Bélanger D., “Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors,” J. Electrochem. Soc., 153, A2171-A2180 (2006)
    連結:
  4. Bordjiba T and Bélanger D, “Direct Redox Deposition of Manganese Oxide on Multiscaled Carbon Nanotube/Microfiber Carbon Electrode for Electrochemical Capacitor,” J. Electrochem. Soc, 156, A378-A384 (2009)
    連結:
  5. Buciuman F, Patcas F, Craciun R, Zahn D. R. T.,” Vibrational Spectroscopy of Bulk and Supported Manganese Oxides,” Phys. Chem. Chem. Phys., 1, 185-190 (1999)
    連結:
  6. Chou S. L., Wang J. Z., Chew S. Y., Liu H. K., Dou S. X., “Electrodeposition of MnO2 Nanowires on Carbon Nanotube Paper as Free-Standing, Flexible Electrode for Supercapacitors,” Electrochem. Commun., 10, 1724-1727 (2008)
    連結:
  7. Dai Y., Wang K, and Xie J. Y., “From Spinel Mn3O4 to Layered Nanoarchitectures Using Electrochemical Cycling and the Distinctive Pseudocapacitive Behavior,” Appl. Phys. Lett., 90, 104102 (2007)
    連結:
  8. Gash A. E., Tillotson T. M., Satcher J. H. Jr., Poco J. F., Hrubesh L. W., and Simpson R. L., ” Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts,” Chem. Mater., 13, 999-1007 (2001)
    連結:
  9. Husing N. and Schubert U., “Aerogels-Airy Materials: Chemistry, Structure, and Properties”, Angew. Chem. Int. Ed., 37, 22-45 (1998)
    連結:
  10. Hu C. C., Chang K. H., Lin M. C., and Wu Y. T., “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Lett., 6, 2690-2695 (2006)
    連結:
  11. Hu C. C., Chu C. H., “Electrochemical Impedance Characterization of Polyaniline-Coated Graphite Electrodes for Electrochemical Capacitors — Effects of Film Coverage: Thickness and Anions,” J. Electroanalyt. Chem., 503, 105-116 (2001)
    連結:
  12. Hu C. C., Wu Y. T., and Chang K. H., “Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant Influence of Oxidants,” Chem. Mater., 20, 2890–2894 (2008)
    連結:
  13. Kistler S. S., “Coherent Expanded Aerogels and Jellies,” Nature, 127, 741 (1931)
    連結:
  14. Li J., Wang X., Huang Q., Gamboa Sergio, Sebastian P. J., “Studied on Preparation and Performances of Carbon Aerogel Electrodes for the Application of Supercapacitor,” J. Power Sources, 158, 784-788 (2006)
    連結:
  15. Mulvaney P., Cooper R., and Grieser F., “Kinetics of Reductive Dissolution of Colloidal Manganese-Dioxide,” J. Phys. Chem., 94, 8339 (1990)
    連結:
  16. Pajonk G. M., “Some Applications of Silica Aerogels,” Colloid Polym. Sci., 281, 637-651 (2003)
    連結:
  17. Pang S. C., Anderson M. A. and Chapman T. W., Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide,” J. Electrochem. Soc., 147, 444-450 (2000)
    連結:
  18. Pierre A. C. and Pajonk G. M.,” Chemistry of Aerogels and Their Applications,” Chem. Rev., 102, 4243-4265 (2002)
    連結:
  19. Pletcher. D. and Walsh F. F., “Industrial Electrochemistry”, CHAPMAN & HALL, N.Y., (1990)
    連結:
  20. Reddy R. N. and Reddy R. G., “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material,” J. Power Sources, 132, 315-320 (2004)
    連結:
  21. Tewari P. H., Hunt A. J., Lofftus K. D., “Ambient-Temperature Supercritical Drying of Transparent Silica Aerogels,” Mater. Lett., 3, 363-367 (1985)
    連結:
  22. Wang H., Lu Z., Qian D., Li Y. and Zhang W., “Single-Crystal α-MnO2 Nanorods: Synthesis and Electrochemical Properties,” Nanotechnology, 18, 115616 (2007)
    連結:
  23. Wu M. S., “Electrochemical Capacitance From Manganese Oxide Nanowire Structure Synthesized by Cyclic Voltammetric Electrodeposition,” Appl. Phys. Lett, 87, 153102 (2005)
    連結:
  24. Wu M., Snook G. A., Chen G. Z., and Fray D. J., “Redox Deposition of Manganese Oxide on Graphite for Supercapacitors,” Electrochem. Commun., 6, 499 (2004)
    連結:
  25. Wu N. L., “Nanocrystalline oxide Supercapacitors,” Mater. Chem. Phys, 75, 6-11 (2002)
    連結:
  26. Xu Z, Li Y., Zhang J., Chang L., Zhou R., Duan Z., “Ultrafine NiO–La2O3–Al2O3 Aerogel: A Promising Catalyst for CH4/CO2 Reforming,” 213, 65-71 (2001)
    連結:
  27. Zheng J. P., Huang J. and Jow T. R., “The Limitations of Energy Density for Electrochemical Capacitors,” J. Electrochem. Soc., 144, 2026-2031(1997)
    連結:
  28. 羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究,” 國立成功大學化學研究所碩士論文
    連結:
  29. Brinker C. J. and Scherer G. W., “Sol-Gel Science. “The Physics and Chemistry of Sol-Gel Processing,” Academic Press, New York (1999)
  30. Iwakura C., Inai M., Manabe M. and Tamura H., “The Cause of the Activity Loss of Titanium-Supported Ruthenium Dioxide Electrode during the Anodic Evolutionn of Oxygen,” Denki Kagaku, 48, 91-96 (1980)
  31. Li G. R., Feng Z. P., Ou Y. N., Wu D., Fu R., Tong Y. X., “Mesoporous MnO2/Carbon Aerogel Composites as Promising Electrode”, Langmuir, 26, 2209–2213 (2010)
  32. Newman J. S., “Electrochemical Systems”, Prentice-Hall, N.J., (1973)
  33. 洪卿雲, “以脈衝-休止法製備錳氧化物奈米線應用於超級電容器,” 國立清華大學化工研究所碩士論文, 4-5 (2009)
  34. 張光輝, “循環伏安法製備含水釕銥氧化物於電化學電容器的定用,” 國立中正大學化工研究所碩士論文, 2 (2000)
  35. 盧偉珠, “高效的金屬氧化物氣凝膠觸媒,” 化工資訊, 四十八期, 58-65 (2001)
  36. 魏得育和呂世源, “最輕的固體 氣凝膠,” 科學發展, 402期, 60-65 (2006)
  37. http://www.batteryuniversity.com
  38. http://www.maxwell.com
Times Cited
  1. 陳宣靜(2013)。氧化鐵/石墨烯複合材料於超級電容器之應用。清華大學化學工程學系學位論文。2013。1-75。 
  2. 簡馨綺(2011)。以溶膠凝膠法製備氧化鎳鈷氣凝膠及其複合材料於產氧及儲能之應用。清華大學化學工程學系學位論文。2011。1-106。 
  3. 莊承翰(2011)。胺類處理之二氧化矽或碳氣凝膠於二氧化碳捕捉之應用。清華大學化學工程學系學位論文。2011。1-114。 
  4. 王詠慧(2012)。氧化鎢/碳氣凝膠複合材料於超級電容器之應用。清華大學化學工程學系學位論文。2012。1-109。