Reference
|
-
Chapter 1: Nanotechnology
連結:
-
[1.1] G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 6131-6134 (1965)
連結:
-
[1.2] W. Lu and C. M. Lieber, "Nanoelectronics from the bottom up," Nat. Mater. 6, 841-850 (2007)
連結:
-
[1.3] L. J. Chen, "Silicon nanowires: the key building block for future electronic devices," J. Mater. Chem. 17, 4639-4643 (2007)
連結:
-
[1.4] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, "Small-diameter silicon nanowire surfaces," Science 299, 1874-1877 (2003)
連結:
-
[1.5] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature 464, 392-395 (2010)
連結:
-
[1.7] Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and Ali Javey, "Black Ge based on crystalline/amorphous core/shell nanoneedle arrays" Nano Lett. 10, 520-523 (2010)
連結:
-
[1.8] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach," Nat. Mater. 6, 951-956 (2007)
連結:
-
[1.9] I. Ponomareva, D. Srivastava, and M. Menon, "Thermal conductivity in thin silicon nanowires-Phonon confinement effect," Nano Lett. 7, 1155-1159 (2007)
連結:
-
[1.10] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, "New directions for low-dimensional thermoelectric materials," Adv. Mater. 19, 1043-1053 (2007)
連結:
-
[1.11] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, "Thermal conductivity of individual silicon nanowires" Appl. Phys. Lett. 83, 2934-2936 (2003)
連結:
-
[1.12] L. Qu, L. Dai, M. Stone, Z. Xia, and Z. L. Wang, "Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off," Science 322, 238-242 (2008)
連結:
-
[1.13] C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen, and Z. L. Wang, "Elastic properties and buckling of silicon nanowires," Adv. Mater. 20, 3919-3923 (2008)
連結:
-
[1.14] X. L. Feng, R. He, P. Yang, and M. L. Roukes, "Very high frequency silicon nanowire electromechanical resonators," Nano Lett. 7, 1953-1959 (2007)
連結:
-
[1.15] A. S. Paulo, N. Arellano, J. A. Plaza, R. He, C. Carraro, R. Maboudian, R. T. Howe, J. Bokor, and P. Yang,, "Suspended mechanical structures based on elastic silicon nanowire arrays," Nano Lett. 7, 1100-1104 (2007)
連結:
-
[1.16] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. De Heer, "Electrostatic deflections and electromechanical resonances of carbon nanotubes," Science 283, 1513-1516 (1999)
連結:
-
[1.17] Q. Xiong, N. Duarte, S. Tadigadapa, and P. C. Eklund, "Force-deflection spectroscopy: a new method to determine the Young's modulus of nanofilaments," Nano Lett. 6, 1904-1909 (2006)
連結:
-
[1.18] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science 294, 1313-1317 (2001)
連結:
-
[1.19] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, "Silicon vertically integrated nanowire field effect transistors," Nano Lett. 6, 973-977 (2006)
連結:
-
[1.21] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang, " Fabrication of a high-brightness blue-light-emitting diode using a ZnO nanowire array grown on p-GaN thin film," Adv. Mater. 21, 2767-2770 (2009)
連結:
-
[1.22] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C.M. Lieber, "Gallium nitride-based nanowire radial heterostructures for nanophotonics," Nano Lett. 4, 1975-1979 (2004)
連結:
-
[1.23] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
連結:
-
[1.24] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
連結:
-
[1.25] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers," Nat. Mater. 7, 701-706 (2008)
連結:
-
[1.26] C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, and L. J. Chen, "Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications," J. Mater. Chem. 19, 7277–7283 (2009)
連結:
-
[1.27] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High performance lithium battery anodes using silicon nanowires," Nat. Nanotech. 3, 31-35 (2008)
連結:
-
[1.28] L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, "Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries," Nano Lett. 9, 3370-3374 (2009)
連結:
-
[1.29] K. Peng, J. Jie, W. Zhang, and S. T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Appl. Phys. Lett. 93, 033105 (2008)
連結:
-
[1.30] Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Fun. Mater. 18, 3553-3567 (2008)
連結:
-
[1.31] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature 414, 332-337. (2001)
連結:
-
[1.32] B. Weintraub, Y. Wei, and Z. L. Wang, "Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells," Angew. Chem. Int. Ed. 48, 8918-8923 (2009)
連結:
-
[1.33] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002)
連結:
-
[1.34] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-890 (2007)
連結:
-
[1.36] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater. 4, 455-459 (2005)
連結:
-
[1.37] E. C. Garnett and P. Yang, "Silicon nanowire radial p-n junction solar cells," J. Am. Chem. Soc. 130, 9224-9225 (2008)
連結:
-
[1.39] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science 320, 634-638 (2008)
連結:
-
[1.40] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
連結:
-
[1.41] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, and J. P. Fleurial, "Nanostructured bulk silicon as an effective thermoelectric material," Adv. Fun. Mater. 19, 2445-2452 (2009)
連結:
-
[1.42] Y. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhau, G. Chen, and Z. Ren, "Structure study of bulk nanograined thermoelectric bismuth antimony telluride," Nano Lett. 9, 1419-1422 (2009)
連結:
-
[1.43] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren "Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys," Nano Lett. 8, 4670-4674 (2008)
連結:
-
[1.44] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, "Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy," Appl. Phys. Lett. 93, 193121 (2008)
連結:
-
[1.45] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature 414, 345-352 (2001)
連結:
-
[1.46] M. Z. Jacobson, W. G. Colella, and D. M. Golden, "Cleaning the air and improving health with hydrogen fuel-cell vehicles," Science 308, 1901-1905 (2005)
連結:
-
[1.47] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
連結:
-
[1.48] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
連結:
-
[1.49] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
連結:
-
[1.50] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle-movement- driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
連結:
-
[1.51] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip-to- nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
連結:
-
[1.52] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
連結:
-
[1.53] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
連結:
-
[1.54] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, "Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods," Adv. Mater. 21, 2185-2189 (2009)
連結:
-
[1.55] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
連結:
-
[1.56] C. T. Huang, J. Song, W. F. Lee, Y. Ding, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
連結:
-
[1.57] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, " Single-InN-nanowire nanogenerator with upto 1 V output voltage," Adv. Mater. (in press)
連結:
-
[1.58] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang and Y. Zhang, "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Adv. Fun. Mater. 14, 943-956 (2004)
連結:
-
[1.59] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, "Carbon nanotube-based nonvolatile random access memory for molecular computing," Science 289, 94-97 (2000)
連結:
-
[1.60] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002)
連結:
-
[1.61] D. Chiba, M. Yamanouch, F. Matsukura and H. Ohno, "Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor," Science 301, 943-945 (2003)
連結:
-
[1.62] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors," Science 287, 1019-1022 (2000)
連結:
-
[1.63] M. Yamanouchi, J. Ieda, F. Matsukura, S. E. Barnes, S. Maekawa, and H. Ohno, "Universality classes for domain wall motion in the ferromagnetic semiconductor (Ga,Mn)As," Science 317, 1726-1729 (2007)
連結:
-
[1.64] H. Ohno, "Making nonmagnetic semiconductor magnetic," Science 281, 951-956 (1998)
連結:
-
[1.65] Y. Dong, B. Tian, T. Kempa, and C. M. Lieber, "Coaxial group III-nitride nanowire photovoltaics," Nano Lett. 9, 2183-2187 (2009)
連結:
-
[1.66] T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng and C. M. Lieber, "Single and tandem axial p-i-n nanowire photovoltaic devices," Nano Lett. 8, 3456-3460 (2008)
連結:
-
[1.67] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, "Piezoelectric-potential-controlled polarity-reversible schottky diodes and switches of ZnO wires," Nano Letters. 8, 3973-3977 (2008)
連結:
-
[1.69] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Appl. Phys. Lett. 4, 89-90 (1964)
連結:
-
[1.70] B. J. Kim, J. Tersoff, C. Y. Wen, M. C. Reuter, E. A. Stach, and F. M. Ross, "Determination of size effects during the phase transition of a nanoscale Au-Si eutectic," Phys. Rev. Lett. 103, 155701-155704 (2009)
連結:
-
[1.71] B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, "Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth," Science 322, 1070-1073 (2008)
連結:
-
[1.72] C. Wiethoff, F. M. Ross, M. Copel, M. H. V. Hoegen, and F. J. M. Z. Heringdorf, "Au stabilization and coverage of sawtooth facets on Si nanowires grown by vapor-liquid-solid epitaxy," Nano Lett. 8, 3065–3068 (2008)
連結:
-
[1.73] S. M. Arnold and S. E. Kounce, “Filamentary growths on metals at elevated temperatures,” J. Appl. Phys. 27, 964-965 (1956)
連結:
-
[1.74] Y. L. Chueh , M. W. Lai , J. Q. Liang , L. J. Chou, and Z. L. Wang, "Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process," Adv. Fun. Mater. 16, 2243-2251 (2006)
連結:
-
[1.75] L. C. Campos, M. Tonezzer, A. S. Ferlauto, V. Grillo, R. Magalhaes-Paniago, S. Oliveira, L. O. Ladeira, and R. G. Lacerda, "Vapor-solid-solid growth mechanism driven by epitaxial match between Solid AuZn alloy catalyst particles and ZnO nanowires at low temperatures," Adv. Mater. 20, 1499-1505 (2008)
連結:
-
[1.76] Z. Li, L. Cheng, Q. Sun, Z. Zhu, M. J. Riley, M. Aljada, Z. Cheng, X. Wang, G. R. Hanson, S. Qiao, S. C. Smith, and G. Q. Lu, "Diluted magnetic semiconductor nanowires prepared by the solution-liquid-solid method," Angew. Chem. Int. Ed. 49, 2777-2781 (2010)
連結:
-
[1.77] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, "Oxide-assisted growth and optical characterization of gallium-arsenide nanowires," Appl. Phys. Lett. 78, 3304-2206 (2001)
連結:
-
[1.78] R. Q. Zhang , Y. Lifshitz, and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Adv. Mater. 15, 635-640 (2003)
連結:
-
Chapter 2: Material Properties
連結:
-
[2.1] J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, "Mesoscopic size effects on the thermal conductance of silicon nanowire," Nano Lett. 9, 1861-1865 (2009)
連結:
-
[2.2] L. Shi, D. Yao, G. Zhang, and B. Li, "Size dependent thermoelectric properties of silicon nanowires," Appl. Phys. Lett. 95, 063102 (2009).
連結:
-
[2.3] G. Zhang, Q. Zhang, C. T. Bui, G. Q. Lo, and B. Li, "Thermoelectric performance of silicon nanowires," Appl. Phys. Lett. 94, 213108 (2009).
連結:
-
[2.4] T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, "Atomistic design of thermoelectric properties of silicon nanowires," Nano Lett. 8, 1111-1114 (2008)
連結:
-
[2.5] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C.M. Lieber, "High performance silicon nanowire field effect transistors," Nano Lett. 3, 149-152 (2003)
連結:
-
[2.6] C. Yang, Z. Zhong, and C.M. Lieber, "Encoding electronic properties by synthesis of axial modulation doped silicon nanowires," Science 310, 1304-1307 (2005)
連結:
-
[2.7] Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C.M. Lieber, "Si/a-Si core/shell nanowires as nonvolatile crossbar switches," Nano Lett. 8, 386-391 (2008)
連結:
-
[2.8] Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, "New nanostructured Li2S/silicon rechargeable battery with high specific energy," Nano Lett. 10, 1486-1491 (2010)
連結:
-
[2.9] C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, "Solution-grown silicon nanowires for lithium-ion battery anodes," ACS nano 4, 1443-1450 (2010)
連結:
-
[2.10] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature 451, 163-167 (2008)
連結:
-
[2.11] C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, "Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors," Nano Lett. 6, 2929-2934 (2006)
連結:
-
[2.12] O. Hayden, R. Agarwal, and C.M. Lieber, "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection," Nat. Mater. 5, 352-356 (2006)
連結:
-
[2.13] E. Garnett, and P. Yang, "Light trapping in silicon nanowire solar cells," Nano Lett. 10, 1082-1087 (2010)
連結:
-
[2.14] B. Tian, T. J. Kempa, and C. M. Lieber, "Single nanowire photovoltaics," Chem. Soc. Rev. 38, 16-24 (2009)
連結:
-
[2.15] L. J. Chen, "Silicon nanowires: the key building block for future electronic devices," J. Mater. Chem. 17, 4639-4643 (2007)
連結:
-
[2.16] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, "Doping and electrical transport in silicon nanowires," J. Phys. Chem. B 104, 5213-5216 (2000).
連結:
-
[2.17] M. V. Fernandez-Serra, Ch. Adessi, and X. Blase, "Conductance, surface traps, and passivation in doped silicon nanowires," Nano Lett. 6, 2674-2678 (2006)
連結:
-
[2.18] G. Zheng, W. Lu, S. Jin, and C.M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
連結:
-
[2.19] K. K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, and S. W. Novak, "Structural and electrical properties of trimethylboron-doped silicon nanowires," Appl. Phys. Lett. 85, 3101-3103 (2004).
連結:
-
[2.20] Z. Wang and J. L. Coffer, "Erbium surface-enriched silicon nanowires," Nano Lett. 2, 1303-1305 (2002)
連結:
-
[2.21] G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
連結:
-
[2.22] J. S. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999).
連結:
-
[2.23] J. Wu, P. Punchaipetch, R. M. Wallace, and J. L. Coffer, "Fabrication and optical properties of Erbium-doped germanium nanowires," Adv. Mater. 16, 1444-1448 (2004).
連結:
-
[2.24] J. Wang, M. J. Zhou, S. K. Hark, Q. Li, D. Tang, M. W. Chu, and C. H. Chen, "Local electronic structure and luminescence properties of Er doped ZnO nanowires," Appl. Phys. Lett. 89, 221917 (2006).
連結:
-
[2.25] L. Zhao, T. Lu, M. Zacharias, J. Yu, J. Shen, H. Hofmeister, M. Steinhart, and U. Gosele," Integration of erbium-doped lithium niobate microtubes into ordered macroporous silicon," Adv. Mater. 18, 363-366 (2006).
連結:
-
[2.26] Y. Ding, X. D. Wang, and Z. L. Wang, "Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite", Chem. Phys. Lett. 398 32-36 (2004)
連結:
-
[2.27] X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, "Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts," Science 303, 1348-1351 (2004)
連結:
-
[2.28] X. Y. Kong and Z. L. Wang, "Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals," Appl. Phys. Letts. 84, 975-977 (2004)
連結:
-
[2.29] Z. L. Wang, X. Y. Kong, and J. M. Zuo, "Induced growth of asymmetric nanocantilever arrays on polar surfaces," Phys. Rev. Letts. 91, 185502 (2003)
連結:
-
[2.30] Z. L. Wang, "Nanopiezotronics," Adv. Mater. 19, 889-892 (2007)
連結:
-
[2.31] Z. L. Wang, "Piezotronic and piezophototronic effects," J. Phys. Chem. Lett. 1, 1388-1393 (2010)
連結:
-
[2.32] Y. Gao and Z. L. Wang, "Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire," Nano Lett. 9, 1103-1110 (2009)
連結:
-
[2.33] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Res. 2, 624-629 (2009)
連結:
-
[2.34] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Adv. Funct. Mater. 14, 943-956 (2004)
連結:
-
[2.35] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
連結:
-
[2.36] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
連結:
-
laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
連結:
-
[2.38] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
連結:
-
[2.39] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
連結:
-
[2.40] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
連結:
-
[2.41] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
連結:
-
[2.42] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, "Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods," Adv. Mater. 21, 2185-2189 (2009)
連結:
-
[2.43] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
連結:
-
[2.44] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
連結:
-
[2.45] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, " Single-InN-nanowire nanogenerator with upto 1 V output voltage," Adv. Mater. (in press)
連結:
-
[2.46] Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, "Coaxial group III-nitride nanowire photovoltaics," Nano Lett. 9, 2183-2187 (2009)
連結:
-
[2.47] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically aligned p-Type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells," Nano Lett. 8, 4191-4195 (2008)
連結:
-
[2.48] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C.M. Lieber, "Gallium nitride-based nanowire radial heterostructures for nanophotonics," Nano Lett. 4, 1975-1979 (2004)
連結:
-
[2.49] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride-gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004)
連結:
-
[2.50] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
連結:
-
[2.51] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well heterostructures for wavelength-controllednanowire lasers," Nat. Mater. 7, 701-706 (2008)
連結:
-
[2.52] A. Cremades, L. Gorgens, O. Ambacher, M. Stutzmann, and F. Scholz, "Structural and optical properties of Si-doped GaN," Phys. Rev. B 61, 2812-2818 (2000)
連結:
-
[2.53] J. Jayapalan, B. J. Skromme, R. P. Vaudo, and V. M. Phanse, "Optical spectroscopy of Si-related donor and acceptor levels in Si-doped GaN grown by hydride vapor phase epitaxy," Appl. Phys. Lett. 73, 1188-1190 (1998)
連結:
-
[2.54] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
連結:
-
[2.55] T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Luth, "Photoluminescence and intrinsic properties of MBE-grown InN nanowires," Nano Lett. 6, 1541-1547 (2006)
連結:
-
[2.56] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, "Synthesis of long Iindium nitride nanowires with uniform diameters in large quantities," Small 1, 1004 (2005)
連結:
-
[2.57] M. Fujiwara, Y. Ishitani, X. Wang, S. B. Che, and A. Yoshikawa, " Infrared analysis of hole properties of Mg-doped p-type InN films," Appl. Phys. Lett. 93, 231903 (2008)
連結:
-
[2.58] X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa, "Hole mobility in Mg-doped p-type InN films," Appl. Phys. Lett. 92, 132108 (2008)
連結:
-
Chapter 4: Er-doped Silicon Nanowires with 1.54 μm Light-emitting and Excellent Field Emission Properties
連結:
-
[4.1] H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, "1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon," Appl. Phys. Lett. 43, 943-945 (1983)
連結:
-
[4.2] G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, "Room-temperature electroluminescence from Er-doped crystalline Si," Appl. Phys. Lett. 64, 2235-2237 (1994)
連結:
-
[4.3] J. S. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999)
連結:
-
[4.4] J. Wu, P. Punchaipetch, R. M. Wallace, and J. L. Coffer, "Fabrication and optical properties of erbium-doped germanium nanowires," Adv. Mater. 16, 1444-1448 (2004)
連結:
-
[4.5] Z. Wang and J. L. Coffer, "Erbium surface-enriched silicon nanowires," Nano Lett. 2, 1303-1305 (2002)
連結:
-
[4.6] K. Suh, J. H. Shin, O. H. Park, B. S. Bae, J. C. Lee, and H. J. Choi, "Optical activation of Si nanowires using Er-doped, sol-gel derived silica," Appl. Phys. Lett. 86, 053101 (2005)
連結:
-
[4.7] J. Wang, M. J. Zhou, S. K. Hark, Q. Li, D. Tang, M. W. Chu, and C. H. Chen, "Local electronic structure and luminescence properties of Er doped ZnO nanowires," Appl. Phys. Lett. 89, 221917 (2006)
連結:
-
[4.8] L. Zhao, T. Lu, M. Zacharias, J. Yu, J. Shen, H. Hofmeister, M. Steinhart, and U. Gosele, "Integration of erbium-doped lithium niobate microtubes into ordered macroporous silicon," Adv. Mater. 18, 363-366 (2006)
連結:
-
[4.9] J. H. Shin, M. J. Kim, S. Y. Seo, and C. Lee, "Composition dependence of room temperature 1.54 μm Er3+ luminescence from erbium-doped silicon: oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition," Appl. Phys. Lett. 72, 1092-1094 (1998)
連結:
-
[4.10] M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, "1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+," Appl. Phys. Lett. 71, 1198-1120 (1997)
連結:
-
[4.11] A. Polman, G. N. van den Hoven, J. S. Custer, J. H. Shin, R. Serna, and P. F. A. Alkemade, "Erbium in crystal silicon: optical activation, excitation, and concentration limits," J. Appl. Phys. 77, 1256-1262 (1995)
連結:
-
[4.12] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, "Small-diameter silicon nanowire surfaces," Science 299, 1874-1877 (2003)
連結:
-
[4.13] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science 294, 1313-1317 (2001)
連結:
-
[4.14] Y. Cui and C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," Science 291, 851-853 (2001)
連結:
-
[4.15] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, "Doping and electrical transport in silicon nanowires," J. Phys. Chem. B. 104, 5213-5216 (2000).
連結:
-
[4.16] K. K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, and S. W. Novak, "Structural and electrical properties of trimethylboron-doped silicon nanowires," Appl. Phys. Lett. 85, 3101-3103 (2004).
連結:
-
[4.17] W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, "Synthesis of large areas of highly oriented, very long silicon nanowires," Adv. Mater. 12, 1343-1345 (2000).
連結:
-
[4.18] Q. Gu, H. Dang, J. Cao, J. Zhao, and S. Fan, "Silicon nanowires grown on iron-patterned silicon substrates," Appl. Phys. Lett. 76, 3020-3021 (2000).
連結:
-
[4.19] R. Q. Zhang, Y. Lifshitz, and S.T. Lee, "Oxide assisted growth of semiconducting nanowires," Adv. Mater. 15, 635-640 (2003).
連結:
-
[4.20] V. Schmidt, S. Senz, and U. Goesele, "Diameter-dependent growth direction of epitaxial silicon nanowires," Nano Lett. 5, 931-935 (2005).
連結:
-
[4.21] M. Dovrat, N. Arad, X. H. Zhang, S. T. Lee, and A. Sa’ar, "Optical properties of silicon nanowires from cathodoluminescence imaging and time-resolved photoluminescence spectroscopy," Phys. Rev. B 75, 205343 (2007)
連結:
-
[4.24] Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, "Synthesis of taperlike Si nanowires with strong field emission," Appl. Phys. Lett. 86, 133112 (2005)
連結:
-
[4.25] Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, and T. K. Sham, "Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains," Appl. Phys. Lett. 79, 1673-1675 (2001)
連結:
-
[4.26] H. W. Wu, C. J. Tsai, and L. J. Chen, "Room temperature ferromagnetism in Mn+-implanted Si nanowires," Appl. Phys. Lett. 90, 043121 (2007)
連結:
-
Chapter 5: Erbium-doped Silicon Nanocables with 1.54 μm Light-emitting and Tunable Ferromagnetic Properties
連結:
-
[5.1] L. J. Chen, "Silicon nanowires the key building block for future electronic devices," J. Mater. Chem. 17, 4639-4643 (2007)
連結:
-
[5.2] W. Lu and C. M. Lieber, "Nanoelectronics from the bottom up," Nat. Mater. 6, 841 (2007).
連結:
-
[5.3] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, "Small-diameter silicon nanowire surfaces," Science 299, 1874-1877 (2003).
連結:
-
[5.4] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, "Thermal conductivity of individual silicon nanowires," Appl. Phys. Lett. 83, 2934-2936, (2003)
連結:
-
[5.5] C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen, and Z. L. Wang, "Elastic properties and buckling of Silicon nanowires," Adv. Mater. 20, 3919-3923 (2008).
連結:
-
[5.6] S. Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gősele, and C. Ballif, "Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires," Nano Lett. 6, 622-625 (2006)
連結:
-
[5.7] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
連結:
-
[5.8] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, "Silicon vertically integrated nanowire field effect transistor," Nano Lett. 6, 673-677 (2006)
連結:
-
[5.9] K. Peng, J. Jie, W. Zhang, and S. T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Appl. Phys. Lett. 93, 033105 (2008)
連結:
-
[5.10] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, And Y. Cui, "High performance lithium battery anodes using silicon nanowires," Nat. Nanotech. 3, 31-35 (2008)
連結:
-
[5.11] S. Coffa, F. Priolo, G. Franzo, V. Bellani, A. Carnera, and C. Spinella, "Optical activation and excitation mechanisms of Er implanted in Si," Phys. Rev. B 48, 11782-11789 (1993).
連結:
-
[5.12] J. S. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999).
連結:
-
[5.13] G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, "Room-temperature electroluminescence fro Er-doped crystalline Si," Appl. Phys. Lett. 64, 2235-2237 (1994).
連結:
-
[5.14] S. Coffa, G. Franzo, and F. Priolo, "High efficiency and fast modulation of Er-doped light emitting Si diodes," Appl. Phys. Lett. 69, 2077-2079 (1996).
連結:
-
[5.15] C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, "Er-doped silicon nanowires with 1.54 μm light-emitting and enhanced electrical and field emission properties," Appl. Phys. Lett. 91, 093133 (2007).
連結:
-
[5.16] P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Appl. Phys. 91, 534-536 (2002).
連結:
-
[5.17] H. Ohno, "Making nonmagnetic semiconductors ferromagnetic," Science 281, 951-956 (1998).
連結:
-
[5.18] H. W. Wu, C. J. Tsai, and L. J. Chen, "Room temperature ferromagnetism in Mn+-implanted Si nanowires," Appl. Phys. Lett. 90, 043121 (2007)
連結:
-
[5.19] Y. J. Li, C. Y. Wang, M. Y. Lu, K. M. Li, and L. J. Chen, "Electrodeposited hexagonal ringlike superstructures composed of hexagonal Co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties," Crys. Growth & Design 8, 2598-2602 (2008).
連結:
-
[5.20] M. Y. Lu, L. J. Chen, W. Mai, and Z. L. Wang, "Tunable electric and magnetic properties of CoxZn1−xS nanowires," Appl. Phys. Lett. 93, 242503 (2008)
連結:
-
[5.21] J. M. Zavada, N. Nepal, C. Ugolini, J. Y. Lin, H. X. Jiang, R. Davies, J. Hite, C. R. Abernathy, S. J. Pearton, E. E. Brown, and U. Hommerich, "Optical and magnetic behavior of erbium-doped GaN epilayers grown by metal-organic chemical vapor deposition," Appl. Phys. Lett. 91, 054106 (2007).
連結:
-
[5.22] W. F. Lee, C. Y. Lee, M. L. Ho, C. T. Huang, C. H. Lai, H. Y. Hsieh, P. T. Chou, and L. J. Chen, "Nd-doped silicon nanowires with room temperature ferromagnetism and infrared photoemission," Appl. Phys. Lett. 94, 263117 (2009)
連結:
-
[5.23] J. P. Zhou, N. F. Chen, S. L. Song, C. L. Chai, S. Y. Yang, Z. K. Liu, and L. Y. Lin, "Magnetic properties of silicon doped with gadolinium," Appl. Phys. A 77, 599-602 (2003)
連結:
-
[5.24] J. F. Elliott, S. Legvold, and F. H. Spedding, "Magnetic properties of erbium metal," Phys. Rev. 100, 1595-1596 (1955).
連結:
-
[5.26] R. M. Moon, W. C. Koehler, H. R. Child, and L. J. Raubenheimer, "Magnetic structures of Er2O3 and Yb2O3," Phys. Rev. 176, 722-731 (1968).
連結:
-
[5.27] P. I. Gaiduk, J. Chevallier, W. Wesch, and A. N. Larsen, "Er+ implantation in SnO2:SiO2 layers: structure changes and light emission," Nucl Inst and Methods Phys Res. B 267, 1336-1339 (2009).
連結:
-
[5.28] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, "Ferromagnetism in Fe-doped SnO2 thin films," Appl. Phys. Lett. 84, 1332-1334 (2004)
連結:
-
Chapter 6: GaN Nanowire Arrays for High-Output Nanogenerators
連結:
-
[6.1] Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Fun. Mater. 18, 3553-3567 (2008)
連結:
-
[6.2] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002)
連結:
-
[6.3] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature 414, 332-337 (2001)
連結:
-
[6.4] B. Weintraub, Y. Wei, and Z. L. Wang, "Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells," Angew. Chem. Int. Ed. 48, 8981-8985 (2009)
連結:
-
[6.5] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater. 4, 455-459 (2005)
連結:
-
[6.6] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-890 (2007)
連結:
-
[6.7] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
連結:
-
[6.8] L. Schlapbach, "Hydrogen-fuelled vehicles," Nature 460, 809-811 (2009)
連結:
-
[6.9] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature 414, 345-352 (2001)
連結:
-
[6.10] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
連結:
-
[6.11] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
連結:
-
[6.12] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
連結:
-
[6.13] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
連結:
-
[6.14] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
連結:
-
[6.15] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
連結:
-
laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
連結:
-
[6.17] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
連結:
-
[6.18] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, "Gallium nitride nanowire nanodevices," Nano Lett. 2, 101-104 (2002)
連結:
-
[6.19] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections," Nano Lett. 3, 1063-1066 (2003)
連結:
-
[6.20] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controllednanowire Lasers," Nat. Mater. 7, 701-706 (2008)
連結:
-
[6.21] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
連結:
-
[6.22] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
連結:
-
[6.23] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004)
連結:
-
[6.24] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically aligned p-Type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells," Nano Lett. 8, 4191-4195 (2008)
連結:
-
[6.25] R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Luth, "Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy," Nano Lett. 7, 2248-2251 (2007)
連結:
-
[6.26] S. D. Hersee, X. Sun, and X. Wang, "The controlled growth of GaN nanowires," Nano Lett. 6, 1808-1811 (2006)
連結:
-
[6.27] H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung, "Growth of GaN nanorods by hydride vapor phase epitaxy method,"Adv. Mater. 14, 991-993 (2002)
連結:
-
[6.28] J. Yoo, Y. J. Hong, S. J. An, G. C. Yi, B. Chon, T. Joo, J. W. Kim, and J. S. Lee, "Photoluminescent characteristics of Ni-catalyzed GaN nanowires," Appl. Phys. Lett. 89, 043124 (2006)
連結:
-
[6.29] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, "Crystallographic alignment of high-density gallium nitride nanowire arrays," Nat. Mater. 3, 524-528 (2004)
連結:
-
[6.30] Y. Gao and Z. L. Wang, "Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics," Nano Lett. 7, 2499-2505 (2007)
連結:
-
[6.31] V. A. Fonoberov and A. A. Balandin, "Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1-xN quantum dots," J. Appl. Phys. 94, 7178-7186 (2003)
連結:
-
[6.32] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical transport properties of single GaN and InN nanowires," J. Electronic Mater. 35, 738-743 (2006)
連結:
-
[6.33] Y. Gao and Z. L. Wang, "Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire," Nano Lett. 9, 1103-1110 (2009)
連結:
-
[6.34] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Res. 2, 624-629 (2009)
連結:
-
[6.35] Z. Y. Gao, J. Zhou, Y. D. Gu, P. Fei, Y. Hao, G. Bao, and Z. L. Wang, "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J. Appl. Phys. 105, 113707 (2009).
連結:
-
Chapter 7: Single InN Nanowire Nanogenerator with Upto 1 V Output Voltage
連結:
-
[7.1] Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Fun. Mater. 18, 3553-3567 (2008)
連結:
-
[7.2] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature 414, 332-337 (2001)
連結:
-
[7.3] B. Weintraub, Y. Wei, and Z. L. Wang, "Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells," Angew. Chem. Int. Ed. 48, 8981-8985 (2009)
連結:
-
[7.4] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002)
連結:
-
[7.5] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-890 (2007)
連結:
-
[7.6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
連結:
-
[7.7] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science 320, 634-638 (2008)
連結:
-
[7.8] B. C. H. Steele, A. Heinzel, "Materials for fuel-cell technologies," Nature 414, 345-352 (2001)
連結:
-
[7.9] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
連結:
-
[7.10] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
連結:
-
laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
連結:
-
[7.12] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
連結:
-
[7.13] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
連結:
-
[7.14] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
連結:
-
[7.15] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
連結:
-
Lee, J. M. Kim, and S. W. Kim, "Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods," Adv. Mater. 21, 2185-2189 (2009)
連結:
-
[7.17] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
連結:
-
[7.18] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
連結:
-
[7.19] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano Lett. 10, 726-731 (2010)
連結:
-
[7.20] T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Luth, "Photoluminescence and intrinsic properties of MBE-grown InN nanowires," Nano Lett. 6, 1541-1547 (2006)
連結:
-
[7.21] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, "Gallium nitride nanowire nanodevices," Nano Lett. 2, 101-104 (2002)
連結:
-
P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections," Nano Lett. 3, 1063-1066 (2003)
連結:
-
[7.23] S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, and S. Gradecak, "Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution,"Nano Lett. 9, 3940-3944 (2009)
連結:
-
[7.24] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
連結:
-
[7.25] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride-gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004)
連結:
-
[7.26] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well heterostructures for wavelength-controllednanowire Lasers," Nat. Mater. 7, 701-706 (2008)
連結:
-
[7.27] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
連結:
-
[7.28] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically aligned p-Type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells," Nano Lett. 8, 4191-4195 (2008)
連結:
-
[7.29] Y. Dong, B. Tian, T. Kempa, and C. M. Lieber, "Coaxial group III-nitride nanowire photovoltaics," Nano Lett. 9, 2183-2187 (2009)
連結:
-
[7.30] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, "Synthesis of long indium nitride nanowires with uniform diameters in large quantities," Small 1, 1004-1009 (2005)
連結:
-
[7.32] Y. Gao and Z. L. Wang, "Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire," Nano Lett. 9, 1103-1110 (2009)
連結:
-
[7.33] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Res. 2, 624-629 (2009)
連結:
-
[7.34] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," J. Appl. Phys. 82, 2833-2839 (1997)
連結:
-
[7.35] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B 56, 10024 (1997)
連結:
-
[7.37] V. Cimalla, V. Lebedev, F. M. Morales, M. Niebelschutz, G. Ecke, R. Goldhahn, and O. Ambacher, "Origin of n-type conductivity in nominally undoped InN," Mat.-Wiss. Werkstofftech. 37, 924-928 (2006)
連結:
-
Chapter 8: Future Prospects
連結:
-
[8.1] S. Coffa, G. Franzo, F. Priolo, A. Pacelli, and A. Lacaita, "Direct evidence of impact excitation and spatial profiling of excited Er in light emitting Si diodes," Appl. Phys. Lett. 73, 93-95 (1998)
連結:
-
[8.2] M. Matsuoka and S. I. Tohno, "Electroluminescence of erbium doped silicon films as grown by ion beam epitaxy," Appl. Phys. Lett. 71, 96-98 (1997)
連結:
-
[8.3] S. Coffa, G. Franzo, and F. Priolo, "High efficiency and fast modulation of Er-doped light emitting Si diodes," Appl. Phys. Lett. 69, 2077-2079 (1996)
連結:
-
[8.4] Z. L. Wang, and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
連結:
-
[8.5] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
連結:
-
[8.6] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
連結:
-
[8.7] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
連結:
-
[8.8] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
連結:
-
[8.9] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
連結:
-
[8.10] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
連結:
-
[8.11] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
連結:
-
[8.12] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
連結:
-
[8.13] C. T. Huang, J. H. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "Single-InN-nanowire nanogenerator with upto 1 V output voltage," Adv. Mater. (In press)
連結:
-
[1.6] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009)
-
[1.20] O. Gunawan, L. Sekaric, A. Majumdar, M. Rooks, J. Appenzeller, J. W. Sleight, S. Guha, and W. Haensch, "Measurement of carrier mobility in silicon nanowires," Nano Lett. 8, 1566-1571 (2008)
-
[1.35] A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, and P. Yang, "Oligo- and polythiophene/ZnO hybrid nanowire solar cells," Nano Lett. 10, 334-340 (2010)
-
[1.38] Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, "Three dimensional nanopillar array photovoltaics on low cost and flexible substrates," Nat. Mater. 8, 648-653 (2009)
-
[1.68] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao and Z. L. Wang, "Flexible piezotronic strain sensor," Nano Letters, 8, 3035–3040 (2008)
-
[2.37] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with
-
[2.59] R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, "Evidence for p-type doping of InN," Phys. Rev. Lett. 96, 125505 (2006)
-
[4.22] S. M. Sze, "Physics of Semiconductor Devices," 2nd edition Wiley, New York 304 (1981)
-
[4.23] J. L. Benton, J. Michel, L. C. Kimerling, D. C. Jacobson, Y. H. Xie, D. J. Eaglesham, E. A. Fitzgerald, and J. M. Poate, "The electrical and defect properties of erbium-implanted silicon," J. Appl. Phys. 70, 2667-2671 (1991).
-
[5.25] J. M. Cadogan, D. H. Ryan, Z. Altounian, X. Liu, and I. P. Swainson, "Magnetic structure of Er5Si4," J. Appl. Phys. 95, 7076-7078 (2004).
-
[6.16] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with
-
[7.11] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with
-
[7.16] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y.
-
[7.22] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and
-
[7.31] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager III, W. Shan, E. E. Haller, H. Lu, and W. J. Schaff, "Fermi-level stabilization energy in group III nitrides," Phys. Rev. B 71, 161201 (2005)
-
[7.36] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, "Experimental and theoretical studies of phonons in hexagonal InN," Appl. Phys. Lett. 75, 3297-3299 (1999)
|