Title

藉由第一原理分析CrSi2(核)/SiO2(殼)奈米電纜異常的鐵磁性質與氧化鎳薄膜成長研究

Translated Titles

First-principles Analyses of Unusual Ferromagnetism Observed in CrSi2 (Core)/SiO2 (Shell) Nanocables and The Growth of Nickel Oxide Films

Authors

韓侑宏

Key Words

第一原理 ; 奈米電纜 ; CrSi2 ; 鐵磁性質 ; 化學氣相沈積法

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

歐陽浩

Content Language

繁體中文

Chinese Abstract

第一部份 本實驗藉由常壓化學氣相沈積法,在沒有金屬催化劑的情況下,製出高密度CrSi2(核)/SiO2(殼)奈米電纜,發現有異常的鐵磁性質,這是有別於它們在塊材時為反磁性材料的。內部CrSi2奈米線為C40型態結構(空間族為P6222),其沿著[0001]方向成長,外側為非晶的SiO2層覆蓋。因此我們藉由第一原理摸擬近似真實奈米電纜的表面結構,結果發現靠近表面的Cr原子有約2μB的磁化量,直到深度0.5nm後內部Cr原子磁性就跟塊材時一樣(0μB)。藉由進一步的近似,並考慮表面粗糙度造成的表面積增加,計算結果得出和實驗結果相同數量級的磁化量。因此這樣的奈米電纜結構,主要是因為CrSi2表面積的增加,表面的Cr原子未完全配位鍵結及鍵結的扭曲,使得Cr原子3d軌域的自旋向上和自旋向下的電子數不同,而有鐵磁性材料的性質。這些結果顯示了一個新的方式用來調整核/殼奈米電纜的磁性質。 第二部份 本實驗利用雙離子束濺鍍系統(dual ion beam deposition system,DIBD)鍍膜底層反鐵磁NiO,雙離子束包含直流(direct current,DC)離子源與輔鍍的射頻(radio frequency,RF)離子源。改變輔鍍的射頻離子源的轟擊電壓(VRF=50、75、100、150和200V),以及射頻離子槍中氧氣的流量(O2流量=0.5、0.8和1sccm,固定氬氣流量2.5sccm),來探討這些改變對NiO薄膜成長的影響。原子力顯微鏡分析NiO薄膜其表面粗糙度,並藉由低掠角X光繞射分析NiO薄膜成長的擇優成長取向,以了解底層NiO薄膜的成長是否影響後續Co/Pt的成長和磁性質(垂直異向性及垂直交換偏壓)。而Co/Pt多層膜的結構是以電子束蒸鍍系統來成長,不過由於目前機台組裝與真空度還有一些問題還沒解決,這部份還有待後續的研究。

English Abstract

Part I Unusual ferromagnetism has been observed in high density free-standing CrSi2(core)/SiO2(shell) nanocables synthesized by atmosphere pressure chemical vapor deposition method without using any metal catalyst, which is in evident contrast to diamagnetic properties of both CrSi2 and SiO2 in bulk. The hexagonal CrSi2 C40 type (P6222) nanowires grows along [0001] direction and is covered with amorphous SiO2, as characterized by high resolution transmission electron microscopy (HRTEM). The supercell used in the first-principles calculation, which include the interface between CrSi2 and amorphous SiO2, was constructed from analyses of HRTEM images. The simulations results indicate that Cr atoms around the interface with an anomalously high magnetization up to about 2 μB/atom, due to distorted /dangling bonds, and are consistent with the magnetic measurements by also considering the roughness and distribution of oxygen around the interface. These results point towards a new way to tune magnetism in core/shell nanowires. Part II The underlying antiferromagnetic NiO was prepared using a dual ion beam deposition system. Dual ion beam deposition system contains DC ion source and RF ion source (assisted beam). Change the RF ion source bombardment voltage (VRF=50、75、100、150 and 200V) and the flow rate of oxygen (O2 flow rate=0.5、0.8 and 1 sccm and fixed Ar flow rate =2.5 sccm), to discuss these changes on the growth of NiO films. The surface roughness of NiO films were analyzed by atomic force microscopy, and the crystal structure of the NiO films were characterized with X-ray diffraction at a grazing angle of one degree. To understand whether the underlying growth of NiO films will influence the growth of Co/Pt multilayers and magnetic properties (perpendicular anisotropy and perpendicular exchange bias). The Co/Pt multilayers will prepare by electron beam evaporation system, however, the system has some problems not yet resolved, so these part need further study in the future.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. [1]P. K. Bondyopadhyay, Proceedings of the IEEE 86, 191(1998)
    連結:
  2. [2]E. Borisenko, Semiconducting silicides, Springer (2000)
    連結:
  3. [5]D. Shinoda, S. J. Asanabe, J. Phys. Soc. Jpn. 21, 555 (1966)
    連結:
  4. [9]中興大學材料工程學系碩士論文,探討氧化層對矽奈米線擴散機制之影響,鄭名廷,民國98年
    連結:
  5. [10]清華大學工程與系統科學系碩士論文,以第一原理分子動力學計算矽塊材與矽量子點之熔化溫度,陳立達,民國96年
    連結:
  6. [1]Wei LU and Charles M Lieber, J. Phys. D: Appl. Phys. 39, R387 (2006)
    連結:
  7. [2]中興大學材料工程學系碩士論文,探討點接觸反應對矽化鎳奈米線異質結構形成機制與微結構之影響,許永瑞,民國98年
    連結:
  8. [4]M. Law, J. Goldberger, P. Yong, Annu. Rev. Mater. Res. 34, 83 (2004)
    連結:
  9. [8]B. T. Park, K. Yong, Nanotechnology 15, S365(2004)
    連結:
  10. [11]A. E. van Arkel, J. H. Z. de Boer, Anorg. Allgem. Chem. 148, 345 (1925)
    連結:
  11. [22]胡裕民,三五稀磁性半導體薄膜之研究與發展,物理雙月刊,二十六卷四期 (2004)
    連結:
  12. [23]S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)
    連結:
  13. [24]孫士傑,奈米碳管自旋電子元件簡介,物理雙月刊,三十卷二期 (2008)
    連結:
  14. [3]中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民國97年
    連結:
  15. [4]B. D. Cullity, Elements of X-RAY Diffraction, 3rd ed, (2001).
    連結:
  16. [5]B. E. Warren, X-RAY Diffraction, (1969).
    連結:
  17. [6]楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期(2002)。
    連結:
  18. [7]P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
    連結:
  19. [8]W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
    連結:
  20. [10]G. Kresse, J. Hafner, J. Phys. Rev. B 47, 558 (1993)
    連結:
  21. [11]G. Kresse, J. Furthmuller, J. Phys. Rev. B 54, 11169 (1996)
    連結:
  22. [12] 中興大學材料工程學系碩士論文,探討氧化層對矽奈米線擴散機制之影響,鄭名廷,民國98年
    連結:
  23. [2]W. J. Strydom, J. C. Lombaard, R. Pretorius, Thin Solid Films, 131, 215 (1985)
    連結:
  24. [5]D. Shinoda, S. J. Asanabe, J. Phys. Soc. Jpn. 21, 555 (1966)
    連結:
  25. [7]R. J. Bell, P. Dean, Phil. Mag. 25, 1381 (1972)
    連結:
  26. [8]M. A. Rykova, V. L. Zagryazhskii, A. V. Sabirzyanov, P. V. Gel'd, Electric, magnetic and galvanomagnetic properties of Cr5Ge3 and Cr5Si3 at low temperatures.
    連結:
  27. [9]J. Kubler, J. Magn. Magn. Mater. 20, 277 (1980)
    連結:
  28. [2]Pu-Ling Lu and Stanley H. Charap, IEEE Trans. Magn., 30, 4230(1996)
    連結:
  29. [4]S. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975).
    連結:
  30. [5]S. N. Piramanayagam, J. Appl. Phys. 102, 011301 (2007)
    連結:
  31. [6]中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民國97年
    連結:
  32. [1]Nicola A . Spaldin , “Magnetic Materials : Fundamentals and device applications” (2003)
    連結:
  33. [3]B.D.C., Introduction to magnetic magerials(1972)
    連結:
  34. [4]Pu-Ling Lu and Stanley H. Charap, IEEE Trans. Magn., 30, 4230(1996)
    連結:
  35. [6]W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413
    連結:
  36. [12]J. Nogue’s and Ivan K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203.
    連結:
  37. [13]W.H. Meiklejohn, J. Appl. Phys. 33,1328(1962)
    連結:
  38. [14]A. E. Berkowitz, and Kentaro Takano, J. Magn. Magn. Mater. 200 (1999) 552.
    連結:
  39. [15]D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys. 62 (1987) 3047
    連結:
  40. [16]A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679.
    連結:
  41. [17]A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874.
    連結:
  42. [18]A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673.
    連結:
  43. [19]N. C. Koon, Phys. Rev. Lett. 78 (1997) 4865.
    連結:
  44. [20]T. C. Schulthess, W. H. Butler, Phys. Rev. Lett., 81 (1998) 4516.
    連結:
  45. [25]A.S.H. Rozatian et al., J. Magn. Magn. Mater. 256(2003) 365
    連結:
  46. [27]Eric E. Fullerton et al., United states patent application publication 0101692 (2002)
    連結:
  47. [31]S.S. Kim, J.Y. Hwang, J.R. Rhee, J. Magn. Magn. Mater. 310, 2310(2007)
    連結:
  48. [34]Federica Di Iorio, University of Naples “Federico II”,(2007).
    連結:
  49. [42] B. Dieny et al. , Spin-transfer effect and its use in spintronic
    連結:
  50. Components, Int. J. Nanotechnology.
    連結:
  51. Bulletin 18, 41(2008)
    連結:
  52. [47]中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜顯微結構之分析及其交換偏壓性質,劉家政,民國95年
    連結:
  53. [48]中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民國97年
    連結:
  54. [51]U. Nowak , K. D. Usadel , Phys. Rev. B 66 (2002) 014430.
    連結:
  55. [57]N. N. Phuoc, T. Suzuki, IEEE Trans. Mag. 43, 897(2007)
    連結:
  56. J. Magn. Magn. Mater. 198, 468 (1999)
    連結:
  57. [61]T. C. Schulthess, W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998)
    連結:
  58. [4]SPM presentation for basic training, Veeco
    連結:
  59. [5]B. D. Cullity, Elements of X-RAY Diffraction, 3rd ed, (2001)
    連結:
  60. [6]中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民國97年
    連結:
  61. [7]H. R. Kaufman, R. S. Robinson, R. I. Seddon, J. Vac. Sci. Technol. A 5, 2081 (1987)
    連結:
  62. [11]國立中央大學光電科學研究所碩士論文,鋁金屬誘發多晶矽之研究,鄭春皇,民國95年
    連結:
  63. [2]中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民國97年
    連結:
  64. [3]V. Valvoda, M. Jarvinen, Powder Diffraction, 5, 200 (1990)
    連結:
  65. [8]C. R. Guarnieri, S. D. Offsey, J. J. Cuomo, J. Vac. Sci. And Technol.
    連結:
  66. [9]C. H. Lai, P. H. Huang, Y. J. Wang, R. T. Huang, J. Appl. Phys. 95, 7222 (2004)
    連結:
  67. 第一部份 第一章
  68. [3]A. L. Schmitt, J. M. Higgins, J. R. Szczech, S. Jin, J. Mater. Chem. 20, 223 (2010)
  69. [4]J. R. Szczech, A. L. Schmitt, M. J. Bierman, S. Jin, Chem. Mater. 19, 3238 (2007)
  70. [6]N. Manyala, Y. Sidis, J. F. Ditusa, G. Aeppli, D. P. Young, Z. Fisk, Nat. Mater. 3, 255 (2004)
  71. [7]K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim, B. Kim, Nano Lett. 7, 1240 (2007)
  72. [8]郭光宇等人,Ab initio study of novel magnetic materials in double perovskites structure
  73. 第一部份 第二章
  74. [3]C. N. R. Rao, F. L. Deepak, Gautam Gundiah, A. Govindaraj, Progress in Solid State Chemistry 31, 5 (2003)
  75. [5]F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem. 45, 7511 (2006)
  76. [6]馮榮豐、陳錫添,奈米工程概論(2003)
  77. [7]H.F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, Chemical Physics Letters 323, 224 (2000)
  78. [9]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)
  79. [10]K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim, B. Kim, Nano Lett. 7, 1240 (2007)
  80. [12]P. Crespo, R. Litran, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sanchez-Lopez, M. A. Garcia, A. Hernando, S. Penades, A. Fernandez, Phys. Rev. Lett. 93, 087204 (2004)
  81. [13]S. Lorenza, D. Fiorani, G. Scavia, P. Imperatori, Chem. Mater. 19, 1509 (2007)
  82. [14]R. H. Kodama, S. A. Makhlouf, A. E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)
  83. [15]E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, F. Schuth, Nano. Lett. 6, 2977 (2006)
  84. [16]M. C. Bost and John E. Mahan, J. Appl. Phys. 63, 839 (1988)
  85. [17]N. Manyala, Y. Sidis, J. F. Ditusa, G. Aeppli, D. P. Young, Z. Fisk, nature materials 3, 255 (2004)
  86. [18]M. H. Ham, J. W. Lee, K. J. Moon, J. H. Choi, J. M. Myoung, J. Phys. Chem. C. 113, 8143 (2009)
  87. [19]H. Ohno, D. Chlba, F. Matsukura, T. Omlya, E. Abe, T. Dletl, Y. Ohno, K. Ohtanl, Nature 408, 944 (2000)
  88. [20]K. Lee, M. Durrani, Physics World, "The spintronic challenge", pp24-28 (2008)
  89. [21]http://www.visel.net/goals/motivation-en
  90. [25] W. J. Strydom, J. C. Lombaard, R. Pretorius, Thin Solid Films, 131, 215 (1985)
  91. 第一部份 第三章
  92. [1]汪建民等人,"材料分析",中國材料科學學會(1998)
  93. [2]林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民國92年9月
  94. [9]John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  95. 第一部份 第四章
  96. [1]K. Seo, K. S. K. Varadwaj, D. Cha, J. In, J. Kim, J. Park, B. Kim, J. Phys. Chem. C 111, 9072 (2007)
  97. [3]K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim, B. Kim, Nano Lett. 7, 1240 (2007)
  98. [4]L. F. Mattheiss, Physical Review B 43, 12549 (1991)
  99. [6]M. C. Bost and John E. Mahan, J. Appl. Phys. 63, 839 (1988)
  100. [10]S. P. Lewis, P. B. Allen, T. Sasaki, Phys. Rev. B, 55, 10253 (1997)
  101. [11]P. S. Robbert, H. Geisler, C. A. Ventrice, J. van Ek, S. Chaturvedi, J. A. Rodriguez, M. Kuhn, U. Diebold, J. Vac. Sci. Technol. A 16, 990 (1998)
  102. 第二部份 第一章
  103. [1]T. M. Coughlin, The Once and Future Hard Disk Drive, http://www.tomcoughlin.com (2006)
  104. [3]B. R. Acharya, A. Inomata, E. N. Abarra, A. Ajan, D. Hasegawa, and I. Okamoto, J. Magn. Magn. Mater. 260, 261 (2003)
  105. [7]http://www.seagate.com/
  106. [8]http://www.toshiba.co.jp/rdc/rd/fields/08_e06_e.htm
  107. [9]P.F. Carcia, Journal of applied Physics 61(1988) 5066
  108. 第二部份 第二章
  109. [2]金重勳主編, ”Handbook of Magnetic Technologies”,中華民國磁性技術協會,(2002).
  110. [5]S. N. Piramanayagam, JOURNAL OF APPLIED PHYSICS 102, 011301 (2007)
  111. [7]R. K. Zheng, Hui. Liu, Y. Wang, and X. X. Zhang, J. Appl. Phys. 96 (2004) 5370.
  112. [8]T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys. 78 (1995) 1887.
  113. [9]A. N. Dobrynin, D. N. levlev, K. Temst P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou, A. Vantomme, E. Piscopiello, and G. Van Tendeloo, Appl. Phys. Lett. 87, (2005) 012501 .
  114. [10]J. Nogue’s, C. Leighton and Ivan K. Schuller, Phys. Rev. B 61 (2000-II) 1315.
  115. [11]X. Ke, M. S. Rzchowski, L. J. Belenky, and C. B. Eom, Appl. Phys. Lett. 84, (2004) 5458
  116. [21]Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao,, J. Appl. Phys. 83 (1998) 6888
  117. [22]M.T. Johnson, P.J.H. Bloemen, F.J.A.den Broeder, J.J. de Vries, Rep. Prog. Phys. 59(1996) 1409
  118. [23]C. J. Lin et al., Journal of Magnetism and Magnetic Materials 93 (1991) 194
  119. [24]P.F. Carcia, Journal of applied Physics 61(1988) 5066
  120. [26]S. Maat, K. Takano, S. S. P. Parkin, and Eric E. Fullerton,Phys. Rev. Lett. 87 (2001) 087202
  121. [28]C.H. Marrows, Physical Review B 68, 012405(2003)
  122. [29]J. Sort et al., Physical Review B 71,054411(2005)
  123. [30]Sebastiaan van Dijken, Jerome Moritz, and J.M.D. Coey,J. Appl. Phys. 97, 063907(2005)
  124. [32]Magnetic Materials Center (MMC), NIMS : http://www.nims.go.jp/apfim/tutorial.html
  125. [33]Ricardo C. Sousa, I. Lucian Prejbeanu, C. R. Physique 6 (2005), 1013
  126. [35]Yiming Huai, AAPPS Bulletin 18, 33 (2008)
  127. [36]張慶瑞,物理雙月刊三十卷第二期110(2008)
  128. [37]劉益瑞,磁矩的旋進
  129. [38]衛榮漢、賴梅鳳、張慶瑞,物理雙月刊(廿六卷四期)2004年8月
  130. [39]D.C. Ralph, M.D. Stiles, Journal of magnetism and magnetic materials 320, 1190 (2008)
  131. [40]By Randall Law, Rachid Sbiaa and Thomas Liew, Perpendicular spin transfer torque MRAM, http://www.dsi.a-star.edu.sg/library/e-news/Oct08/magnetic.htm
  132. [41]Eric E. Fullerton, Journal of Magnetism and magnetic materials 320, 1217(2008)
  133. [43]SPINTEC, http://www.spintec.fr/index.php3
  134. [44]S. Mangin, D. Ravelosona, Y. Henry, J.A. Katine and Eric E. Fullerton, AAPPS
  135. [45]Nakayama M. et al., Journal Applied Physics 103, 07A710(2008)
  136. [46]U.K. Klostermann et al. 2007 IEDM Technical Digest(2007), p. 187.
  137. [49]中興大學材料工程學系碩士論文,控制氧含量對鎳鈷/鎳鈷氧化物雙層薄膜之微結構與磁性質的影響,林逸華,民國98年
  138. [50]Florin Radu , Hartmut Zabel , cond-mat.mtrl-sci , 0705.2055v1.
  139. [52]U. Nowak, A. Misra, K. D. Usadel, J. Appl. Phys. 389 (2001) 7268.
  140. [53]P. Miltényi ,M. Gierlings , J. Keller, B. Beschoten, Phys. Rev. Lett. 84, (2000) 4224.
  141. [54]Joo-Von Kim, R. L. Stamps, Phys. Rev. B. 71, 094495(2005)
  142. [55]F. Radu, A. Westphalen, K. Theis-Brohl, H. Zabel., J. Phys.:Condens. Matter 18, L29(2006)
  143. [56]Z. Y. Liu, S. Adenwalla, J. Appl. Phys. 94, 1105(2003)
  144. [58]N. N. Phuoc, T. Suzuki, J. Appl. Phys. 99, 08C107(2006)
  145. [59]S. Zhang, D. V. Dimitrov, G. C. Hadjipanayis, J. W. Cai, and C. L. Chien,
  146. [60]T. F. Ambrose, T. J. Klemmer, R. J. M. van de Veerdonk, G. J. Parker, J. K. Howard, Patnet US6835464 (2004)
  147. [62]J. Nogues, D. Lederman, T. J. Moran, Ivan K. Schuller, Phys. Rev. Lett. 76, 4624 (1996)
  148. [63]N. N. Phuoc, N. P. Thuy, N. A. Tuan, L. T. Hung, N. T. Thanh, N. T. Nam, J. Magn. Magn. Mater. 298, 43 (2006)
  149. 第二部份 第三章
  150. [1]Kenny Liu, Ion Beam Source, Veeco
  151. [2]Veeco ion source(產品說明書)
  152. [3]汪建民等人,"材料分析",中國材料科學學會(1998)
  153. [8]國立中央大學光電科學研究所碩士論文,離子輔助反應射頻磁控濺鍍紫外光薄膜之研究,戴國良,民國九十年
  154. [9]http://www.msm.cam.ac.uk/phasetrans/2003/Superalloys/coatings/index.html
  155. [10]E-Gun原理與技術資料, http://www.ndl.org.tw/web/department/cfteam/docs/devices/forms_E/T21_E_2.doc
  156. [12]ULVAC網站,http://www.ulvac.co.jp/eng/products/compo/F140006.html
  157. 第二部份 第四章
  158. [1]M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries , Rep. Prog. Phys. 59 ,1409(1996)
  159. [4]劉金聲,離子束沈積薄膜技術及應用,國防工業出版社 344-347(2003)
  160. [5]J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology” (1989)
  161. [6]逢甲大學材料科學與工程學系碩士論文,雙離子束濺鍍鋅鉬氧化物薄膜於聚醚堸基板之光電特性研究,何紹誌,民國98年。
  162. [7]J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, Appl. Phys. Lett. 43, 547 (1983)
  163. [10]G. H. Yu, F. W. Zhu, C. L. Chai, Appl. Phys. A 76, 45 (2003)
Times Cited
  1. 蘇泰廷(2011)。電子束蒸鍍形成L10-[Fe(1.4nm)/Pd(1.9nm)]5 多層膜的磁性質與微結構之研究。清華大學材料科學工程學系學位論文。2011。1-110。 
  2. 李承澤(2011)。藉由第一原理分析CoSi(核)/SiO2(殼)、 CrSi2(核)/SiO2(殼) 和FeSi(核)/SiO2(殼)奈米電纜異常的鐵磁性質。清華大學材料科學工程學系學位論文。2011。1-319。