Title

石墨烯合成與透明可撓式導電膜,有機汙染物吸收及場發射性能應用之研究

Translated Titles

Synthesis of graphene and its application for flexible and transparent conductors, organic contaminant absorbents, and electron field emitters

DOI

10.6843/NTHU.2012.00338

Authors

阮德勇

Key Words

石墨烯 ; 透明可撓式導電膜 ; 場發射 ; 汙染物吸收 ; graphene ; flexible and transparent conductors ; electron field emitters ; contaminant absorbents

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

戴念華

Content Language

英文

Chinese Abstract

The PhD is Vietnamese, the publication is in English.

English Abstract

Graphene is defined as a flat monolayer of sp2-hybridized carbon atoms tightly packed into a two-dimensional (2D) honeycomb structure. This stringently 2D material exhibits a broad range of extraordinary properties, such as excellent electrical and thermal conductivities, and extremely high strength, which hold great promises in a variety of applications in micro/nanoelectronics, composites, and clean energy. Of special interests are the physicochemical properties of graphene materials strongly dependent on synthetic methods, resulting in diverse practical uses employed. This dissertation mainly aims to develop new approaches for production of graphene materials using wet chemistry as well as chemical vapor deposition (CVD) methods. Subsequently, the as-synthesized graphene materials are employed for applications as flexible and transparent conductors, a key component for removal of organic contaminants (including oils or organic solvents) from water, a supporting barrier for growth of carbon nanotubes (CNTs), and effective fillers for enhancing electron field emission performance of a vacuum filtered CNT film. Generally, exfoliation of graphite into graphene sheets by wet chemistry approaches require intercalating chemicals into interspaces of graphite layers followed by harsh oxidation and reduction or selecting a solvent with surface tension close to that of graphite. In our approach, we prepared ethanol soluble fewlayer graphene nanosheets (FLGs) without adopting the common receipts, thus avoided using toxic oxidizing/reducing agents or poisonous solvents. Atomic force microscopy and high-resolution transmission electron microscopy studies reveal that FLGs have average thicknesses in the range of 2.6–2.8 nm, corresponding to 8–9 layers. A graphene/nafion composite film has a sheet resistance of 9.70 kΩsq-1 at the transmittance of 74.5% (at 550 nm) while the nafion film on polyethylene II terephthalate has a sheet resistance of 128 kΩsq-1 at transmittance of 90.0%. For the cycling/bending test, almost no change in resistance was exhibited when the film was bent at an angle up to 1400, and no obvious deviation in resistance could be found after 100 bending cycles. In addition, a FLGs/poly(3,4- ethylenedioxythiophene): poly(styrenesulfonate) composite layer was demonstrated as the effective hole transporting layer to improve the hole transporting ability in an organic photovoltaic device, with which the power conversion efficiency was enhanced from 3.10% to 3.70%. We further investigated the hydrophobic properties of the ethanol soluble FLG material and its combination with a type of commercial sponge. The FLG films possess strong hydrophobic properties besides their opto/mechano-electrical properties aforementioned. By coating an appropriate amount of FLGs on the sponge skeletons with polydimethylsiloxane (PDMS) binder, superhydrophobic (water contact angle of ~1620) and superoleophilic (oil contact angle of ~00) graphene-based sponges were obtained. The as-fabricated graphene-based sponges perform as an efficient absorbent for a broad range of oils and organic solvents with high selectivity, good recyclability, and excellent absorption capacities up to 165 times their own weight. In addition to wet chemistry method, we also developed a CVD method to grow graphene and integrate thin CNT networks on the surface of the graphene film using the same CVD system. The thickness of graphene and the CNT density on graphene surface can be controlled properly. Graphene films are demonstrated as an effective supporting barrier for preventing poisoning of iron nanoparticles which catalyze the growth of CNTs on copper substrates. Based on this method, the opto-electronic and field emission properties of the graphene integrated with CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of III 2.15 kΩsq-1 with a transmittance of 85.6% (at 550 nm) while a CNT–graphene hybrid film shows an improved sheet resistance of 420 Ωsq-1 with an optical transmittance of 72.9%. Moreover, CNT–graphene films reveal as effective electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3 Vμm-1, respectively. In order to combine the merits of the two-dimensional graphene and onedimensional CNT nanocarbon materials, many efforts have recently been made to obtain graphene-CNT hybrid materials or composites. Most studies on these hybrid materials focused on optoelectronic and electrical properties. Several attempts to create ohmic contact between CVD grown graphene and CNTs to enhance the field emission properties have been investigated. However, no studies utilizing reduced graphene oxide (RGO) nanosheets as the conductive fillers as well as the secondary emitters for enhancing field emission performance of CNT film have been reported to date. Herein, the composite films composing of CNTs and chemically reduced graphene nanosheets were fabricated using the vacuum filtration method. Compared to other processing methods such as chemical vapor deposition, electrophoresis, or screen-printing, this method is more beneficial for fabrication of low-cost field emitters with density controllable and additive avoidable. The composite films with different weight ratios between CNTs and graphene oxide (GO) are prepared by varying the volumes of CNTs and GO dispersions. The results show that the composite film with GO:CNT weight ratio of 1:3 after hydrazine treatment reveals the best field emission performance with low turn on and threshold fields of 2.82 and 2.98 V/μm, respectively.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. [7] A. Fasolino, J. H. Los, M. I. Katsnelson. Intrinsic ripples in graphene. Nat.
    連結:
  2. Roth. Nature, 446, 60 (2007).
    連結:
  3. microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc.
    連結:
  4. Nat. Acad. Sci. USA, 104, 9209 (2007).
    連結:
  5. light atoms and molecules on graphene. Nature, 454, 319 (2008).
    連結:
  6. Edge: Stability and Dynamics. Science, 323, 1705 (2009).
    連結:
  7. Romo-Herrera, H. B. Son, Y. P. Hsieh, A. Reina, J. Kong, M. Terrones, M. S.
    連結:
  8. Dresselhaus. Controlled Formation of Sharp Zigzag and Armchair Edges in
    連結:
  9. Dirac fermions in graphene, Nature, 438, 197-200 (2005).
    連結:
  10. dependent transport in suspended graphene. Phys. Rev. Lett. 101(9):096802
    連結:
  11. [15] X. Du, I. Skachko, A. Barker, E. Y. Andrei. Approaching ballistic transport in
    連結:
  12. suspended graphene. Nat. Nanotechnol., 3(8):491–5 (2008).
    連結:
  13. Stauber, et al. Fine structure constant defines visual transparency of graphene.
    連結:
  14. Tanenbaum, J. M. Parpia, et al. Electromechanical resonators from graphene
    連結:
  15. sheets. Science, 315(5811):490–3 (2007).
    連結:
  16. aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3, 101 (2008).
    連結:
  17. [20] X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, H. J. Dai.
    連結:
  18. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat.
    連結:
  19. Nanotechnol., 3, 538 (2008).
    連結:
  20. Monolayer Film of Graphene Nanosheets at the Liquid−Liquid Interface. Nano
    連結:
  21. Lett., 9, 167 (2009).
    連結:
  22. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G.
    連結:
  23. exfoliation of graphite. Nat. Nanotechnol., 3, 563 (2008).
    連結:
  24. [24] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L.
    連結:
  25. Novoselov, Nano Lett., 8, 1704 (2008).
    連結:
  26. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent
    連結:
  27. Electrodes. ACS Nano, 4, 43 (2009).
    連結:
  28. [26] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P.
    連結:
  29. stretchable transparent electrodes. Nature, 457, 706 (2009).
    連結:
  30. extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 3,
    連結:
  31. 206 (2008).
    連結:
  32. Field emission from graphene based composite films. Appl. Phy. Lett., 93, 233502
    連結:
  33. Cheng. Field emission from single layer graphene films prepared by
    連結:
  34. electrophoretic deposition. Adv. Mater., 21, 1756 (2009).
    連結:
  35. V. Haesendonck. Field emission from vertically aligned few-layer graphene. J.
    連結:
  36. Appl. Phys., 104, 084301 (2008).
    連結:
  37. [32] X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai. Chemically Derived,
    連結:
  38. Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 319, 1229 (2008).
    連結:
  39. [36] B. Lamg, A LEED study of the deposition of carbon on platinum crystal
    連結:
  40. surfaces, Surface Sci., 53, 317 (1975).
    連結:
  41. Oshima, Vibrational spectra of the monolayer films of hexagonal boron nitride and
    連結:
  42. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation
    連結:
  43. quality large-area samples, Solid State Commun., 149, 718 (2009).
    連結:
  44. Liquid Phase Production of Graphene by Exfoliation of Graphite in
    連結:
  45. Graphene Sheets by Direct Dispersion with Aromatic Healing Agents. Small, 6,
    連結:
  46. 1100–1107 (2010).
    連結:
  47. Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett., 9, 3460–
    連結:
  48. Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv.
    連結:
  49. Solvent Exfoliation of Graphene. Small, 6, 864–871 (2010).
    連結:
  50. graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol., 4,
    連結:
  51. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon,
    連結:
  52. 45, 2017 (2007).
    連結:
  53. segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett., 93,
    連結:
  54. 113103 (2008).
    連結:
  55. J. Kong. Large area few-layer graphene films on arbitrary substrates by chemical
    連結:
  56. synthesis of high-quality and uniform graphene films on copper foils. Science, 324,
    連結:
  57. 1312 (2009).
    連結:
  58. [52] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey,
    連結:
  59. J. Bokor and Y. Zhang. Direct Chemical Vapor Deposition of Graphene on
    連結:
  60. Fabrication of Single Layer Graphene Transistors. Nano Lett., 9, 4479 (2009).
    連結:
  61. graphene/graphite films as transparent thin conducting electrodes. Appl. Phys.
    連結:
  62. Lett., 95, 123115 (2009).
    連結:
  63. via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, 19,
    連結:
  64. 305604 (2008).
    連結:
  65. A. S. Biris. Large-scale graphene production by RF-cCVD method. Chem.
    連結:
  66. [57] G. Nandamuri, S. Roumimov and R. Solanki. Chemical Vapor deposition of
    連結:
  67. graphene films. Nanotechnology, 21, 145604 (2010).
    連結:
  68. graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).
    連結:
  69. [60] R. Muszynski, B. Seger and P. V. Kamat. Decorating graphene sheets with
    連結:
  70. gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008).
    連結:
  71. [61] H. C. Schniepp, et al. Functionalized single graphene sheets derived from
    連結:
  72. splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).
    連結:
  73. [62] S. Stankovich, et al. Graphene-based composite materials. Nature 442, 282–
    連結:
  74. 286 (2006).
    連結:
  75. the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-
    連結:
  76. styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).
    連結:
  77. [64] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, et al.
    連結:
  78. Making graphene visible. Appl. Phys. Lett., 91(6):063124 (2007).
    連結:
  79. Direct imaging of lattice atoms and topological defects in graphene membranes.
    連結:
  80. Nano Letters, 8(11):3582–6 (2008).
    連結:
  81. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat.
    連結:
  82. Nanotechnol., 3, 563-568, (2008).
    連結:
  83. [68] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S.
    連結:
  84. Graphene and Graphene Layers. Phys. Rev. Lett., 97, 187401 (2006).
    連結:
  85. [69] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen,
    連結:
  86. A. T. S. Wee. Raman Studies of Monolayer Graphene: The Substrate Effect. J.
    連結:
  87. Phys. Chem. C, 112, 10637 (2008).
    連結:
  88. [70] J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J.
    連結:
  89. [71] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mat., 6, 183
    連結:
  90. Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv.
    連結:
  91. Mater. 21, 4383 (2009).
    連結:
  92. Graphite: 2D Electron Gas Properties and a Route toward Graphene-based
    連結:
  93. Nanoelectronics. J. Phys. Chem. B, 108, 19912 (2004).
    連結:
  94. graphene/graphite films as transparent thin conducting electrodes. App. Phys. Lett.
    連結:
  95. 95, 123115 (2009).
    連結:
  96. J. Kong. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by
    連結:
  97. [79] P. Blake, et al. Graphene-Based Liquid Crystal Device. Nano Lett., 8, 1704
    連結:
  98. nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 4, 1558
    連結:
  99. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay.
    連結:
  100. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J.
    連結:
  101. Phys. Chem. B, 110, 8535 (2006).
    連結:
  102. conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotech., 3, 538
    連結:
  103. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent
    連結:
  104. Conductors. ACS Nano., 2, 463 (2008).
    連結:
  105. [84] Y. Hernandez, et al. High-yield production of graphene by liquid-phase
    連結:
  106. exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).
    連結:
  107. Kelly, H. K. Schmidt and W. E. Billups. Exfoliated soluble graphite. Carbon, 47,
    連結:
  108. Tomkinson J 1999 Inelastic neutron scattering study of the proton dynamics in
    連結:
  109. HNO3 graphite intercalation compounds. Chem. Phys., 242, 273 (1999).
    連結:
  110. Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent,
    連結:
  111. Conducting Electrodes. ACS Nano, 4, 3839 (2010).
    連結:
  112. [88] R. Hao, W. Qian, L. Zhang and Y. L. Hou. Aqueous dispersions of TCNQanion-
    連結:
  113. [89] W. S. Kuo and H. F. Lu. Bending fracture in carbon nanotubes.
    連結:
  114. Nanotechnology, 19, 495710 (2008).
    連結:
  115. Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am.
    連結:
  116. Chem. Soc. 127, 15437 (2005).
    連結:
  117. exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 3342
    連結:
  118. Graphite Oxide:Chemical Reduction to Graphite and Surface Modification with
    連結:
  119. [93] Z. Ying, X. Lin, Y. Qi and J. Luo. Preparation and characterization of lowtemperature
    連結:
  120. 18, 5344 (2008).
    連結:
  121. carbon nanotubes. Chem. Commun. 3283 (2005).
    連結:
  122. [96] J. D. J. Ingle and S. R. Crouch. Spectrochemical Analysis, Prentice Hall, New
    連結:
  123. [97] A. C. Ferrari, et al., Raman Spectrum of Graphene and Graphene Layers.
    連結:
  124. Phys. Rev. Lett., 97, 187401
    連結:
  125. [98] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus. Raman
    連結:
  126. spectroscopy in graphene. Phys. Rep. 473, 51 (2009).
    連結:
  127. Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 21,
    連結:
  128. 2328 (2009).
    連結:
  129. Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic
    連結:
  130. Devices. Adv. Mater. 11 1281 (1999).
    連結:
  131. [101] B. Pradhan, S. K. Batabyal and A. J. Pal. Functionalized carbon nanotubes in
    連結:
  132. Sharon. Fullerene (C60) decoration in oxygen plasma treated multiwalled carbon
    連結:
  133. Improving photovoltaic properties by incorporating both single walled carbon
    連結:
  134. nanotubes and functionalized multiwalled carbon nanotubes. Appl. Phys. Lett. 94,
    連結:
  135. 093509 (2009).
    連結:
  136. Windle and R. H. Friend. Work Functions and Surface Functional Groups of
    連結:
  137. Multiwall Carbon Nanotubes. J. Phys. Chem. B, 103, 8116 (1999).
    連結:
  138. Lett., 88, 062104 (2006).
    連結:
  139. Films, 510, 305 (2006).
    連結:
  140. nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett., 88,
    連結:
  141. 233503 (2006).
    連結:
  142. [108] L. Feng, Z. Y. Zhang, Z. H. Mai, Y. M. Ma, B. Q. Liu, L. Jiang and D. B.
    連結:
  143. Zhu. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the
    連結:
  144. Separation of Oil and Water. Angew. Chem., Int. Ed., 43, 2012 (2004).
    連結:
  145. [109] H. L. Li, J. X. Wang, L. M. Yang and Y. L. Song. Superoleophilic and
    連結:
  146. Superhydrophobic Inverse Opals for Oil Sensors. Adv. Funct. Mater., 18, 3258
    連結:
  147. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol., 3,
    連結:
  148. Y. Li and W. Q. Deng. Superhydrophobic conjugated microporous polymers for
    連結:
  149. separation and adsorption. Energy Environ. Sci., 4, 2062 (2011).
    連結:
  150. [112] X. C. Gui, J. Q. Wei, K. L. Wang, A. Y. Cao, H. W. Zhu, Y. Jia, Q. K. Shu
    連結:
  151. and D. H. Wu. Carbon nanotubes sponges. Adv. Mater., 22, 617 (2010).
    連結:
  152. [113] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183
    連結:
  153. [114] Y. Sun, Q. Wu and G. Shi. Graphene based new energy materials. Energy
    連結:
  154. Environ. Sci., 4, 1113 (2011).
    連結:
  155. [115] Y. J. Shin, Y. Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. X. Shen, C. S.
    連結:
  156. Bhatia and H. Yang. Wettability and Surface Free Energy of Graphene Films.
    連結:
  157. Langmuir, 26, 3798 (2009).
    連結:
  158. Superhydrophilic Wetting Control in Graphene Films. Adv. Mater., 2010, 22, 2151
    連結:
  159. [117] X. Zhang, S. Wan, J. Pu, L. Wang and X. Liu. Highly hydrophobic and
    連結:
  160. adhesive performance of graphene films. J. Mater. Chem., 21, 12251 (2011).
    連結:
  161. graphene nanosheets for flexible and transparent conducting composite films.
    連結:
  162. Nanotechnology, 22, 295606 (2011).
    連結:
  163. [119] D. Que´re´. Surface chemistry: Fakir droplets. Nat. Mater., 1, 14 (2002).
    連結:
  164. Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition.
    連結:
  165. Angew. Chem., Int. Ed., 46, 1710 (2007).
    連結:
  166. [121] W. Barthlott and C. Neinhuis. Purity of the sacred lotus, or escape from
    連結:
  167. Artificial lotus leaf structures from assembling carbon nanotubes and their
    連結:
  168. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    連結:
  169. Langmuir, 24, 2712 (2008).
    連結:
  170. [124] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater., 2007, 6,
    連結:
  171. Dubonos. Electric Field Effect in Atomically Thin Carbon Films. Science, 306,
    連結:
  172. pattern growth of graphene films for stretchable transparent electrodes.
    連結:
  173. Nature, 457, 706-710 (2009).
    連結:
  174. [128] F. Schwierz. Graphene transistors. Nat. Nanotechnol, 5, 487-496 (2010).
    連結:
  175. Burghard and K. Kern. Electronic Transport Properties of Individual Chemically
    連結:
  176. Reduced Graphene Oxide Sheets. Nano Lett., 7, 3499-3503 (2007).
    連結:
  177. [130] V. C. Tung, M. J. Allen Y. Yang, and R. B. Kaner. High-throughput solution
    連結:
  178. [131] H. Huang and X. Wang. Graphene nanoplate-MnO2 composites for
    連結:
  179. graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010, 2,
    連結:
  180. 2164-2170 (2010).
    連結:
  181. Printed Reduced Graphene Oxide. Angew. Chem. Int. Ed., 49, 2154-2157 (2010).
    連結:
  182. 5366–5372 (2011).
    連結:
  183. [136] R. Wang, J. Sun, L. Gao, C. Xu, J. Zhang and Y. Liu. Effective post
    連結:
  184. treatment for preparing highly conductive carbon nanotube/reduced graphite oxide
    連結:
  185. Hong, and J. H. Ahn. Wafer-Scale Synthesis and Transfer of Graphene Films.
    連結:
  186. Nano Lett., 10, 490-493 (2010).
    連結:
  187. 95, 123115.
    連結:
  188. [140] L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C.
    連結:
  189. Zhou. Continuous, highly flexible, and transparent graphene films by chemical
    連結:
  190. for transparent electrodes. Nat. Nanotech., 5, 574-578 (2010).
    連結:
  191. opening in epitaxial graphene. Nature Materials, 6, 770 – 775 (2007).
    連結:
  192. Stauber, N. M. R. Peres and A. K. Geim. Fine Structure Constant Defines Visual
    連結:
  193. [145] F. Gunes, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi
    連結:
  194. and Y. H. Lee. Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano,
    連結:
  195. Chemical doping of large-area stacked graphene films for use as transparent,
    連結:
  196. Improved electrical and optical characteristics of transparent graphene thin films
    連結:
  197. 1949-1955 (2009).
    連結:
  198. Huang and P. Chen. One-step growth of graphene-carbon nanotube hybrid
    連結:
  199. materials by chemical vapor deposition. Carbon, 49, 2944-2949 (2011).
    連結:
  200. [151] D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H.
    連結:
  201. Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant
    連結:
  202. Graphene Films. Adv. Mater., 22, 1247-1252 (2010).
    連結:
  203. [152] C. C. Chiu, N. H. Tai, M. K. Yeh, B. Y. Chen, S. H. Tseng and Y. H.
    連結:
  204. Chang. Tip-to-tip growth of aligned single-walled carbon nanotubes under an
    連結:
  205. electric field. J. of Crystal Growth, 290, 171-175 (2006).
    連結:
  206. single-walled carbon nanotubes through the thermal chemical vapor deposition
    連結:
  207. 2006, 3215-3219 (2006).
    連結:
  208. [154] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus. Raman
    連結:
  209. spectroscopy in graphene. Phys. Rep., 473, 51 – 87 (2009).
    連結:
  210. Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.
    連結:
  211. Nano Lett., 9, 30–5 (2009).
    連結:
  212. Controlled ripple texturing of suspended graphene and ultrathin graphite
    連結:
  213. membranes. Nat. Nanotechnol., 4, 562-566 (2009).
    連結:
  214. [157] J. B. Nelson and D. P. Riley. The thermal expansion of graphite from 15°c.
    連結:
  215. growth of diamond on carbon-implanted single crystal copper surfaces. J. Mater.
    連結:
  216. multiwalled carbon nanotubes on bulk copper substrates by chemical vapor
    連結:
  217. deposition. J. Mater. Res., 24, 2813–2820 (2009).
    連結:
  218. field emission from multi-walled carbon nanotubes grown on pure copper
    連結:
  219. substrate. Carbon, 48, 1531-1538 (2010).
    連結:
  220. [161] R. T, K. Baker. Catalytic growth of carbon filaments. Carbon, 27, 315-323
    連結:
  221. [162] H. Kanzow and D. Ding. Formation mechanism of single-wall carbon
    連結:
  222. [163] S. De and J. N. Coleman. Are There Fundamental Limitations on the Sheet
    連結:
  223. Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced
    連結:
  224. by Langmuir–Blodgett Assembly. ACS Nano, 5, 6039-6051 (2011).
    連結:
  225. 091502 (2011).
    連結:
  226. [166] J. H. Huang, J. H. Fang, C. C. Liu and C. W. Chu. Effective Work Function
    連結:
  227. Cathodes for Organic Optoelectronics. ACS Nano, 5, 6262-6271 (2011).
    連結:
  228. [167] T. K. Hong, W. D. Lee, H. J. Choi, H. S. Shin and B. S. Kim. Transparent,
    連結:
  229. [168] J. Zhang, T. Feng, W. Yu, X. Liu, X. Wang and Q. Li. Enhancement of field
    連結:
  230. emission from hydrogen plasma processed carbon nanotubes. Diamond Relat.
    連結:
  231. Emission Properties of Double-Walled Carbon Nanotubes Synthesized by
    連結:
  232. Hydrogen Arc Discharge. J. Phys. Chem. C, 112, 430–435 (2008).
    連結:
  233. [170] H. Yang, X. F. Shang, Z. H. Li, S. X. Qu, Z. Q. Gu, Y. B. Xu and M. Wang.
    連結:
  234. Synthesis of large-area single-walled carbon nanotube films on glass substrate and
    連結:
  235. their field electron emission properties. Materials Chemistry and Physics, 2010,
    連結:
  236. 124, 78–82 (2010).
    連結:
  237. from Multiwall Carbon Nanotube Films by Secondary Growth. J. Phys. Chem. B,
    連結:
  238. [172] C. C. Hsieh, M. J. Youh, H. C. Wu, L. C. Hsu, J. C. Guo and Y. Y. Li.
    連結:
  239. Synthesis of Carbon Nanotubes Using a Butane−Air Bunsen Burner and the
    連結:
  240. [173] G. M. Yang, C. C. Yang, Q. Xu, W. T. Zheng and S. Li. Enhancement
    連結:
  241. mechanism of field electron emission properties in hybrid carbon nanotubes with
    連結:
  242. tree- and wing-like features. J. Solid State Chem., 182, 3393–3398 (2009).
    連結:
  243. growth for field-emission cathodes from graphite paste using Ar-ion bombardment.
    連結:
  244. Appl. Phys. Lett., 86, 163112 (2005).
    連結:
  245. emission properties of graphite flakes by producing carbon nanotubes on above
    連結:
  246. 2409–2413 (2010).
    連結:
  247. Nitrogen-Doped Carbon Nanotubes/Reduced Graphene Hybrid Films. Small, 7,
    連結:
  248. [177] R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A, 1928, 119, 173
    連結:
  249. [178] S. M. Lyth and S. R. P. Silva. Field emission from multiwall carbon
    連結:
  250. nanotubes on paper substrates. App. Phys. Lett., 90, 173124 (2007).
    連結:
  251. J. Dai. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field
    連結:
  252. Characteristics and field electron emission properties. Appl. Phys. Lett. 84, 2646
    連結:
  253. nanotips using microwave plasma chemical vapor deposition. Appl. Phys. Lett. 81,
    連結:
  254. individual vertically aligned carbon nanocones. J. Appl. Phys. 91, 4602 (2002).
    連結:
  255. [185] Y. Sun, Q. Wu and G. Shi. Graphene based new energy materials. Energy
    連結:
  256. Environ. Sci., 2011, 4, 1113.
    連結:
  257. [186] D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H.
    連結:
  258. [187] Duc Dung Nguyen, Nyan-Hwa Tai, Szu-Ying Chen and Yu-Lun Chueh.
    連結:
  259. [188] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik,
    連結:
  260. E. V. Buzaneva, A. D. Gorchinskiy. Layer-by-Layer Assembly of Ultrathin
    連結:
  261. Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations.
    連結:
  262. Chem. Mater., 11, 771 (1999).
    連結:
  263. [189] W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am.
    連結:
  264. graphite oxide. Chem. Phys. Lett., 287, 53–56 (1998).
    連結:
  265. [191] H. C. Schniepp, et al. Functionalized single graphene sheets derived from
    連結:
  266. splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).
    連結:
  267. [192] R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A, 1928, 119,
    連結:
  268. (3), 902 (2008).
  269. [6] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff. Graphene-based
  270. Ultracapacitors. Nano Lett. 8 (10), 3498 (2008).
  271. Mater. 6, 858 (2007).
  272. [8] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S.
  273. [9] E. Stolyarova, K. T. Rim, S. M. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F.
  274. Heinz, M. S. Hybertsen, G. W. Flynn. High-resolution scanning tunneling
  275. [10] J. C. Meyer, C. O. Girit, M. F. Crommie, A. Zettl. Imaging and dynamics of
  276. [11] C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.
  277. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl. Graphene at the
  278. 102
  279. [12] X. T. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M.
  280. Graphitic Nanoribbons. Science, 323, 1701 (2009).
  281. [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I.
  282. V. Grigorieva, S. V. Dubonos & A. A. Firsov, Two-dimensional gas of massless
  283. [14] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, P. Kim . Temperature
  284. (2008).
  285. [16] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T.
  286. Science 320(5881):1308 (2008).
  287. [17] C. Gomez-Navarro, M. Burghard, K. Kern. Elastic properties of chemically
  288. derived single graphene sheets. Nano Letters 2008;8(7):2045–9 (2008).
  289. [18] J. S. Bunch JS, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M.
  290. [19] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace. Processable
  291. [21] S. Biswas, L. T. Drzal. A Novel Approach to Create a Highly Ordered
  292. [22] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T.
  293. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison , V. Scardaci, A. C.
  294. 103
  295. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase
  296. [23] X. Wang, L. J. Zhi, K. Mullen. Transparent, Conductive Graphene Electrodes
  297. for Dye-Sensitized Solar Cells. Nano Lett., 8, 323 (2008).
  298. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, K. S.
  299. [25] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans.
  300. Kim, J. Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for
  301. [27] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L.
  302. Colombo, R. S. Ruoff. Transfer of Large-Area Graphene Films for High-
  303. Performance Transparent Conductive Electrodes. Nano Lett., 9, 4359 (2009).
  304. [28] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, M. S. Fuhrer. Intrinsic and
  305. [29] G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amartunga, and M. Chhowalla.
  306. (2008).
  307. [30] Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H.M.
  308. [31] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C.
  309. 104
  310. [33] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H.
  311. Lee, F. Guinea, A. H. C. Neto, A. Lanzara. Substrate-induced bandgap opening in
  312. epitaxial graphene. Nat. Mater., 6, 770 (2007).
  313. [34] F. Schedin, A. K. Geim, S. V. Morozov, et al. Detection of individual gas
  314. molecules adsorbed on grapheme. Nature Materials, 6(9): 652–655 (2007).
  315. [35] N. Mohanty and V. Berry. Graphene-based single-bacterium resolution
  316. biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and
  317. microscale biocomponents. Nano Letters, 2008, 8 (12): 4469–4476 (2008).
  318. [37] E. Rokuta, Y. Hasegawa, A. Itoh, K. Yamashita, T. Tanaka, S. Otani, and C.
  319. graphite on faceted Ni(755), Surface Sci., 427, 97 (1999).
  320. [38] H. Shioyama. Cleavage of graphite to graphene, J. Mat. Sci. Lett., 20, 499
  321. (2001).
  322. [39] V. Huc, N. Bendiab, N. Rosman, T. Ebbesen, C. Delacour, and V. Bouchiat.
  323. of highly oriented pyrolytic graphite. Nanotechnology, 19, 455601 (2008).
  324. [40] A. Shukla, R. Kumar, J. Mazher, and A. Balan, Graphene made easy: high
  325. [41] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson,
  326. F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman.
  327. Surfactant/Water Solutions. J. Am. Chem. Soc., 2009, 131, 3611–3620 (2009).
  328. [42] M. Zhang, R. R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, R.
  329. Brukh, P. L. Chiu, T. Zhou, Z. Liu, E. Garfunkel and H. He. Production of
  330. [43] R. Hao, W. Qian, L. Zhang and Y. Hou. Aqueous dispersions of TCNQanion-
  331. stabilized graphene sheets. Chem. Commun., 6576–6578 (2008).
  332. 105
  333. [44] C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron. High-
  334. 3462 (2009).
  335. [45] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y.
  336. H. Kim, J.-Y. Choi, J. M. Kim and J.-B. Yoo. One-Step Exfoliation Synthesis of
  337. Mater., 21, 4383–4387 (2009).
  338. [46] U. Khan, A. O’Neill, M. Lotya, S. De and J. N. Coleman. High-Concentration
  339. [47] M. Choucair, P. Thordarson and J. A. Stride. Gram-scale production of
  340. 30–33 (2008).
  341. [48] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin.
  342. [49] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei. Graphene
  343. [50] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and
  344. vapor deposition. Nano Lett., 9, 30 (2009).
  345. [51] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, et al., Large-area
  346. Dielectric Surfaces. Nano Lett., 2010, 10, 1542 (2010).
  347. [53] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg and J. Park. Transfer-Free Batch
  348. 106
  349. [54] W. Cai, Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff. Large area few-layer
  350. [55] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V.
  351. Tendeloo, A. Vanhulsel and C. V. Haesendonck. Synthesis of few-layer graphene
  352. [56] E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A. R. Biris, V. Saini and
  353. Commun., 4061–4063 (2009).
  354. [58] H. He, J. Klinowski, M. Forster and A. Lerf. A new structural model for
  355. [59] S. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical
  356. reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565 (2007).
  357. [63] S. Stankovich, et al. Stable aqueous dispersions of graphitic nanoplatelets via
  358. [65] L. Gao, W. Ren, F. Li, H. M. Cheng. Total color difference for rapid and
  359. accurate identification of graphene. ACS Nano, 2(8):1625–33 (2008).
  360. 107
  361. [66] J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl.
  362. [67] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, et al.,
  363. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman Spectrum of
  364. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L.
  365. Myers-Ward, C. R. Eddy, D. K. Gaskill. Correlating Raman Spectral Signatures
  366. with Carrier Mobility in Epitaxial Graphene: A Guide to Achieving High Mobility
  367. on the Wafer Scale. Nano Lett., 9, 2873 (2009).
  368. (2007)
  369. [72] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, J.
  370. H. Yoo, S. M. Yu, J. Y. Choi, J. M. Kim and J. B. Yoo. The superior dispersion of
  371. easily soluble graphite. Small, 6, 58 (2010).
  372. [73] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y.
  373. H. Kim, J. Y. Choi, J. M. Kim and J. B. Yoo. One-Step Exfoliation Synthesis of
  374. [74] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N.
  375. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer. Ultrathin Epitaxial
  376. 108
  377. [75] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F Kelly and
  378. P. M. Ajayan. Novel Liquid Precursor-Based Facile Synthesis of Large-Area
  379. Continuous, Single, and Few-Layer Graphene Films. Chem. Mater., 22, 3457
  380. (2010).
  381. [76] W. Cai, Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff. Large area few-layer
  382. [77] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and
  383. Chemical Vapor Deposition. Nano Lett., 9, 30 (2009).
  384. [78] X. Wang, L. Zhi and L. Mullen. Transparent, Conductive Graphene
  385. Electrodes for Dye-Sensitized Solar Cells. Nano Lett., 8, 323 (2008).
  386. (2008).
  387. [80] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y.
  388. Jia, Y. Wu, S. B. T. Nguyen and R. S. Ruoff. Synthesis of graphene-based
  389. (2007).
  390. [81] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H.
  391. [82] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E and Dai H 2008 Highly
  392. (2008).
  393. [83] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen.
  394. 109
  395. [85] J. Chattopadhyay, A. Mukherjee, S. Chakraborty, J. H. Kang, P. J. Loos, K. F.
  396. 2945 (2009).
  397. [86] F. Fillaux, S. Menu, J. Conard, H. Fuzellier, Parker S W, Hanon A C and
  398. [87] A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol.
  399. stabilized graphene sheets. Chem.Commum., 6576 (2008).
  400. [90] U. J. Kim, C. A. Furtado, X. Liu, G. Chen and P. C. Eklund. Raman and IR
  401. [91] S. Stankovich, R. D. Piner, S. B. T. Nguyen and R. S. Ruof. Synthesis and
  402. (2006).
  403. [92] A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri and I. Dékány.
  404. Primary Aliphatic Amines and Amino Acids. Langmuir, 19, 6050 (2003).
  405. expandable graphite. Materials Research Bulletin, 43, 2677 (2008).
  406. [94] B. T. T. Chu, G. Tobias, C. G. Salzmann, B. Ballesteros, N. Grobert, R. I.
  407. Todd and M. L. H. Green. Fabrication of carbon-nanotube-reinforced glass–
  408. ceramic nanocomposites by ultrasonic in situ sol–gel processing. J. Mater. Chem.,
  409. [95] Q. Li, I. A. Kinloch and A. H. Windle. Discrete dispersion of single-walled
  410. 110
  411. Jersey p 372 (1988).
  412. [99] S. J. Chae, et al. Synthesis of Large-Area Graphene Layers on Poly-Nickel
  413. [100] H. Ago, K. Petritsch, M. S. P. Shaffer, Windle A H and Friend R H 1999
  414. donor/acceptor-type photovoltaic devices. Appl. Phys. Lett., 88, 093106 (2006).
  415. [102] G. Kalita, S. Adhikari, H. R. Aryal, M. Umeno, R. Afre, T. Soga and M.
  416. nanotubes for photovoltaic application. Appl. Phys. Lett., 92, 063508 (2008).
  417. [103] I. Khatri, S. Adhikari, H. R. Aryal, T. Soga, T. Jimbo and M. Umeno.
  418. [104] H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H.
  419. [105] A. J. Cascio, J. E. Lyon, M. M. Beerbom, R. Schlafa, Y. Zhu and S. A.
  420. Jenekhe. Investigation of a polythiophene interface using photoemission
  421. spectroscopy in combination with electrospray thin-film deposition. App. Phys.
  422. [106] Y. H. Kim, S. H. Lee, J. Noh and S. H. Han. Performance and stability of
  423. electroluminescent device with self-assembled layers of poly(3,4-
  424. 111
  425. ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid
  426. [107] J. Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C.
  427. Weeks, I. Levitsky, J. Peltola and P. Glatkowski. Organic solar cells with carbon
  428. (2008).
  429. [110] J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong and F. Stellacci.
  430. 332 (2008).
  431. [111] A. Li, H. X. Sun, D. Z. Tan, W. J. Fan, S. H. Wen, X. J. Qing, G. X. Li, S.
  432. (2007).
  433. [116] J. Rafiee, M. A. Rafiee, Z. Z. Yu and N. Koratkar. Superhydrophobic to
  434. (2010).
  435. 112
  436. [118] D. D. Nguyen, N. H. Tai, Y. L. Chueh, S. Y. Chen, Y. J. Chen, W. S. Kuo,
  437. T. W. Chou, C. S. Hsu and L. J. Chen. Synthesis of ethanol soluble few-layer
  438. [120] I. A. Larmour, S. E. J. Bell and G. C. Saunders. Remarkably Simple
  439. contamination in biological surfaces. Planta, 202, 1 (1997).
  440. [122] Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia and J. H. Xin.
  441. applications in hydrophobic textiles. J. Mater. Chem., 17, 1071 (2007).
  442. [123] B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani and G. Gigli.
  443. 183–91.
  444. [125] C. Lee, X. D. Wei, J. W. Kysar and J. Hone, Science, 2008, 32, 385–8.
  445. [126] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V.
  446. 666-669 (2004).
  447. [127] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim and K. S. Kim. Largescale
  448. [129] C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M.
  449. 113
  450. processing of large-scale graphene. Nat. Nanotechnol., 4, 25 – 29 (2009).
  451. supercapacitors: a controllable oxidation approach. Nanoscale, 3, 3185-3191
  452. (2011).
  453. [132] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang. A nanostructured
  454. [133] P. K. Ang, W. Chen, A. T. S. Wee and K. P. Loh. Solution-Gated Epitaxial
  455. Graphene as pH Sensor. J Am Chem Soc., 130, 14392-14393 (2008).
  456. [134] V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S.
  457. Park, R. S. Ruoff, and S. K. Manohar. All-Organic Vapor Sensor Using Inkjet-
  458. [135] N. Soin, S. S. Roy, S. Roy, K. S. Hazra, D. S. Misra, T. H. Lim, C. J.
  459. Hetherington and J. A. McLaughlin. Enhanced and Stable Field Emission from in
  460. Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes. J. Phys. Chem. C, 115,
  461. hybrid films. Nanoscale, 2011, 3, 904-906 (2011).
  462. [137] Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H.
  463. [138] W. Cai, Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff, Appl. Phys. Lett., 2007,
  464. [139] X. Wang, L. Zhi and K. Müllen, Nano Lett., 2008, 8, 323–327.
  465. vapor deposition for organic photovoltaics. ACS Nano, 2010, 4, 2865–2873
  466. (2010).
  467. 114
  468. [141] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L.
  469. Colombo and R. S. Ruoff. Transfer of Large-Area Graphene Films for High-
  470. Performance Transparent Conductive Electrodes. Nano Lett., 9, 4359–4363 (2009).
  471. [142] S. K. Bae, H. K. Kim, L. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan,
  472. T. Lei, H. R. Kim and Y. I. Song. Roll-to-roll production of 30-inch graphene films
  473. [143] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H.
  474. Lee, F. Guinea, A. H. Castro Neto and A. Lanzara. Substrate-induced bandgap
  475. [144] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T.
  476. Transparency of Graphene. Science, 320, 1308–1308 (2008).
  477. 4, 4595-4600 (2010).
  478. [146] A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol.
  479. conducting electrodes. ACS Nano, 4, 3839-3844 (2010).
  480. [147] Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. Li and J. K. Kim.
  481. produced by acid and doping treatments. Carbon, 49, 2905-2916 (2011).
  482. [148] V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, and R. B.
  483. Kaner. Low-Temperature Solution Processing of Graphene-Carbon Nanotube
  484. Hybrid Materials for High-Performance Transparent Conductors. Nano Lett., 9,
  485. [149] Y. K. Kim and D. H. Min. Durable large-area thin films of graphene/carbon
  486. nanotube double layers as a transparent electrode. Langmuir, 25, 11302-11306
  487. (2009).
  488. [150] X. Dong, B. Li, A. Wei, X. Cao, M. B. Chan-Park, H. Zhang, L. J. Li, W.
  489. 115
  490. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim. Versatile Carbon Hybrid Films
  491. [153] C. C. Chiu, T. Y. Tsai, N. H. Tai and C. H. Lee. Growth of high-quality
  492. using co-sputtering Fe–Mo films as catalysts. Surface & Coatings Technology,
  493. [155] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son and V. Bulovic. Large Area, Few-
  494. [156] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames and C. N. Lau.
  495. to 800°c.: part I. Experimental. Proc. Phys. Soc., 57, 477 (1945).
  496. [158] T. P. Ong, F. Xiong, R. H. P. Chang and C. W. J. White. Nucleation and
  497. Res., 7, 2429-2439 (1992).
  498. [159] G. Li, S. Chakrabarti, M. Schulz and V. Shanov. Growth of aligned
  499. [160] I. Lahiri, R. Seelaboyina, J. Y. Hwang, R. Banerjee and W. Choi. Enhanced
  500. 116
  501. (1989).
  502. nanotubes on liquid-metal particles. Phys. Rev. B, 11180 (1999).
  503. Resistance and Transmittance of Thin Graphene Films. ACS Nano, 4, 2713-2720
  504. (2010).
  505. [164] Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li and J. K. Kim.
  506. [165] J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima.
  507. Low-temperature synthesis of large-area graphene-based transparent conductive
  508. films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett., 98,
  509. Modulation of Graphene/Carbon Nanotube Composite Films As Transparent
  510. Flexible Conducting Hybrid Multilayer Thin Films of Multiwalled Carbon
  511. Nanotubes with Graphene Nanosheets. ACS Nano, 4, 3861–3868 (2010).
  512. Mater., 13, 54–9 (2004).
  513. [169] B. Ha, D. H. Shin, J. Park, and C. J. Lee. Electronic Structure and Field
  514. 117
  515. [171] C. Klinke, E. Delvigne, J. V. Barth and K. Kern. Enhanced Field Emission
  516. 2005, 109, 21677-21680 (2005).
  517. Resulting Field Emission Characteristics. J. Phys. Chem. C, 112, 19224–19230
  518. (2008).
  519. [174] C. E. Hunt, O. J. Glembocki, Y. Wang and S. M. Prokes. Carbon nanotube
  520. [175] W. C. Shih, J. M. Jeng, M. H. Tsai and J. T. Lo. Enhancement of field
  521. using thermal chemical vapor deposition. Applied Surface Science, 2010, 256,
  522. [176] D. H. Lee, J. A. Lee, W. J. Lee, and S. O. Kim. Flexible Field Emission of
  523. 95–100 (2011).
  524. (1928).
  525. [179] W. A. Deheer, A. Chatelain, D. Ugarte. A Carbon Nanotube Field-Emission
  526. Electron Source. Science 1995, 270, 1179 (1995).
  527. [180] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H.
  528. Emission Properties. Science 1999, 283, 512 (1999).
  529. [181] C. H. Weng, K. C. Leou, H.W.Wei, Z. Y. Juang, M. T. Wei, C. H. Tung, C.
  530. H. Tsai. Structural transformation and field emission enhancement of carbon
  531. 118
  532. nanofibers by energetic argon plasma post-treatment. Appl. Phys. Lett. 85, 4732
  533. (2004).
  534. [182] G. Y. Zhang, X. Jiang, E. G. Wang. Self-assembly of carbon nanohelices:
  535. (2004).
  536. [183] C. L. Tsai, C. F. Chen, L. K. Wu. Bias effect on the growth of carbon
  537. 721 (2002).
  538. [184] L. R. Baylor, V. I. Merkulov, E. D. Ellis, M. A. Guillorn, D. H. Lowndes, A.
  539. V. Melechko, M. L. Simpson, J. H. Whealton. Field emission from isolated
  540. Hong, W. J. Lee, R. S. Ruoff and S. O. Kim, Adv. Mater., 2010, 22, 1247–1252.
  541. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and
  542. transparent conductors and electron field emitters. Nanoscale, 4, 632 (2012).
  543. Chem. Soc., 80, 1339 (1958).
  544. [190] H. He, J. Klinowski, M. Forster and A. Lerf. A new structural model for
  545. 173.