Title

三五族半導體上之臨場高介電氧化物原子層沉積

Translated Titles

In-situ atomic layer deposition of high-k dielectrics on III-V semiconductors

Authors

張宇行

Key Words

三五族半導體 ; 原子層沉積 ; 高介電氧化物 ; III-V semiconductors ; atomic layer deposition ; high- dielectrics

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

洪銘輝;黃倉秀

Content Language

英文

Chinese Abstract

本實驗利用自行設計的緩衝腔體實現了臨場連接原子層沉積機台與分子束磊晶系統的組合。利用這個前所未有的組合,我們得以利用原子層沉積機制沉積高介電氧化物於乾淨的三五族半導體磊晶層上。 透過臨場光電子能譜分析發現在臨場原子層沉積之氧化鋁/砷化鎵界面有AsOx的鍵結存在。經由實驗發現在沉積約0.9nm的氧化鋁之後進行臨場超高真空退火可以有效去除AsOx的鍵結,並明顯改善此界面的電性特性。 利用變溫電導量測以及準靜態電容電壓量測方式發現臨場沉積原子層沉積氧化鋁及氧化鉿於含20%的砷化銦鎵上可分別得到7×1012以及5×1012 eV-1cm-2的中央能隙界面缺陷密度,而在含53%的砷化銦鎵上則可分別得到4×1012以及2×1012 eV-1cm-2的中央能隙界面缺陷密度。值得注意的是沉積氧化鋁鉿 (4.5nm)/氧化鉿 (0.8nm)於砷化銦鎵上的結構具有至少能夠承受800oC 熱處理的熱穩定性、在±1MV/cm 保持~10-8 A/cm2的低漏電流、以及1.2nm等校氧化物厚度等優越特性;這些優越特性是非臨場製程無法同時達到的。 另外,在用臨場沉積5nm氧化鋁在含53%的砷化銦鎵上當做閘極氧化物及使用自動對準製程製備的金氧半場效電晶體(閘極長度為1m)也展示了600m/m的汲極電流及350S/m的互導參數;此結果大幅超越了其他利用非臨場沉積氧化鋁在含53%的砷化銦鎵上當做閘極氧化物的金氧半場效電晶體。 由本實驗的結果得知臨場原子層沉積製程能夠製備同時具有高熱穩定性、低漏電流、低等效氧化物厚度以及低界缺陷密度的原子層沉積高介電氧化物/砷化銦鎵結構。

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. 3. K. Saraswat et al., IEDM short course (2007)
    連結:
  2. 5. International Technology Roadmap for Semiconductors (ITRS), 2010 Update.
    連結:
  3. 7. D. N. Butcher and B. J. Sealy, Electron. Lett. 13, 558 (1977).
    連結:
  4. 9. R. A. Logan, B. Schwartz, and W. J. Sandburg, J. Electrochem. Soc. 120, 1385 (1973).
    連結:
  5. 11. R. P. H. Chang and A. K. Sinha, Appl. Phys. Lett. 29, 56 (1976).
    連結:
  6. 24. H. C. Chiu, L. T. Tung, Y. H. Chang, Y. J. Lee, C. C. Chang, J. Kwo,and M. Hong, Appl. Phys. Lett. 93, 202903 (2008)
    連結:
  7. 30. Davood Shahrjerdi, Emanuel Tutuc, and Sanjay K. Banerjee, Appl. Phys. Lett. 91, 063501 (2007)
    連結:
  8. 33. M. A. Herman and H. Sitter, Molecular beam epitaxy: fundamentals and current status, Springer-Verlag, Berlin (1989)
    連結:
  9. 34. S. M. Sze, High speed semiconductor devices, Wiley, New York (1990)
    連結:
  10. 36. Handbook of electronic and photonic materials, edited by Safa Kasap and Peter Capper, Springer, New York (2006)
    連結:
  11. 37. Introduction to Solid State Physics, Kittel, Wiley (1996)
    連結:
  12. 43. Rahul Suri, Bongmook Lee, Daniel J. Lichtenwalner, Nivedita Biswas, and Veena Misra, Appl. Phys. Lett. 93, 193504 (2008)
    連結:
  13. 45. T. Suntola, Appl. Surf. Sci. 100/101, 391 (1996)
    連結:
  14. 49. B. K. Agarwal, X-Ray Spectroscopy, 2nd edition, (Springer-Verlag, Berlin Heidelberg, 1991)
    連結:
  15. 50. C. S. Fadley, “Basic Concepts of X-ray Photoelectron Spectroscopy”, in Electron Spectroscopy: Theory, Techniques and Applications, edited by C. R. Brundle, A. D. Baker, (Academic, New York, 1978), Vol. 1, pp. 1-156.
    連結:
  16. 51. Practical Surface Analysis, 2nd edition, Vol. 1, Auger and X-ray Photoelectron Spectroscopy, edited by D. Briggs and M. P. Seah, Wiley, New York (1990).
    連結:
  17. 52. M. P. Seah and D. P. Dench, “Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids”, Surf. Interface Anal. 1, 2 (1979)
    連結:
  18. 54. R. L. Opila and Joseph Eng Jr., “Thin films and interfaces in microelectronics: composition and chemistry as function of depth”, Prog. Surf. Sci. 69, 125 (2002)
    連結:
  19. 55. K. Hirose, H. Nohira, K. Azuma, and T. Hattori, “Photoelectron spectroscopy studies of SiO2-Si interfaces”, Prog. Surf. Sci. 82, 3 (2007).
    連結:
  20. 56. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, ”Microscopic structure of the SiO2/Si interface”, Phys. Rev. B 38, 6084 (1988).
    連結:
  21. 58. D. K. Schroder, Semiconductor Material and Device Characterization, Wiley- Interscience (2006).
    連結:
  22. 59. E. H. Nicollian and J.R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology”, (Wiley-Interscience, Hoboken, N.J.) 2003.
    連結:
  23. 62. D. K. Schroeder, “Semiconductor Material and Device Characterization, 2nd edition”, New York: Wiley, 1998, ISBN: 0471241393.
    連結:
  24. 63. C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces”, IEEE Trans. Electron Devices, 13, 701 (1966).
    連結:
  25. 64. Y. D. Wu, T. D. Lin, T. H. Chiang, Y. C. Chang, H. C. Chiu, Y. J. Lee, M. Hong, C. A. Lin, and J. Kwo, J. Vac. Sci. Technol. B 28, C3H10 (2010).
    連結:
  26. 66. J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc., 154, G165 (2007).
    連結:
  27. 72. C.-W. Cheng and E. A. Fitzgerald, Appl. Phys. Lett. 96, 202101(2010)
    連結:
  28. 77. Naoki Kobayashi and Yasuyuki Kobayashi, Jan. J. Appl. Phys. 30, L1699 (1991)
    連結:
  29. 78. Matthias Passlack, Ravi Droopad, Peter Fejes, and Lingquan Wang, IEEE Electron Device Lett. 30, 2 (2009).
    連結:
  30. 83. Rahul Suri, Daniel J. Lichtenwalner, and Veena Misra, Appl. Phys. Lett. 92, 243506 (2008).
    連結:
  31. 85. L. Lin and J. Robertson, Appl. Phys. Lett. 98, 082903 (2011).
    連結:
  32. 87. T. T. Chiang and W. E. Spicer, J. Vac. Sci. Technol. A 7(3), 724 (1989)
    連結:
  33. 89. Y. Xuan, Y. Q. Wu, and P. D. Ye, IEEE Electron Device Lett. 29, 294 (2008).
    連結:
  34. 92. P. Chang, H.-C. Chiu, T.-D. Lin, M.-L. Huang, W.-H. Chang, S.-Y. Wu, K.-H. Wu, M. Hong, and J. Kwo, Appl. Phys. Express 4, 114202 (2011).
    連結:
  35. 95. C. L. Hinkle, E. M. Vogel, P. D. Ye, and R. M. Wallace, Curr. Opin. Solid State Mat. Sci. 15, 188 (2011).
    連結:
  36. 98. Y. Hwang, R. Engel-Herbert, and S. Stemmer, Appl. Phys. Lett. 98, 052911 (2011).
    連結:
  37. 103. Y. Hwang, R. Engel-Herbert, N. G. Rudawski, and S. Stemmer, Appl. Phys. Lett. 96, 102910 (2010).
    連結:
  38. 107. C. N. Berglund, IEEE Transact. Electron Devices, ED-13, 701 (1966).
    連結:
  39. 110. W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, J. Vac. Sci. Technol. 17, 1019 (1980).
    連結:
  40. 115. Davood Shahrjerdi, Thomas Rotter, Ganish Balakrishnan, Diana Huffaker, Emanuel Tutuc, and Sanjay K. Banerjee, IEEE Electron Device Lett., 29, 557 (2008)
    連結:
  41. 1. S. Thompson et al., IEDM Technical Digest, p.61 (2002)
  42. 2. M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, IEEE Spectr. 44, 29 (2007).
  43. 4. NSM Archive website - http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html
  44. 6. C. H. Chang, Y. K. Chiu, Y. C. Chang, K. Y. Lee, T. D. Lin, T.B. Wu*, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 242911 (2006)
  45. 8. H. Hasegawa, K. W. Forward, and H. L. Hartnagal, Appl. Phys. Lett. 26, 567 (1975).
  46. 10. O. A. Weinreich, J. Appl. Phys. 37, 2924 (1966).
  47. 12. N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, Appl. Phys. Lett. 32, 58 (1978).
  48. 13. V. M. Bermudez, J. Appl. Phys. 54, 6795 (1983).
  49. 14. S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappell, and G. D. Pettit, Appl. Phys. Lett. 48, 475 (1986).
  50. 15. J. Kwo, D.W. Murphy, M. Hong, R.L. Opila, J.P. Mannaerts, A.M. Sergent, R.L. Masaitis, Appl. Phys. Lett. 75 , 1116 (1999).
  51. 16. M. Hong, J.P. Mannaerts, J.E. Bowers, J. Kwo, M. Passlack, W.-Y. Hwang, L.W. Tu, J. Cryst. Growth 175, 422 (1997)
  52. 17. M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Science 283, 1897 (1999)
  53. 18. S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006)
  54. 19. D. Shahrjerdi, M. M. Oye, A. L. Holmes, Jr., S. K. Banerjee, Appl. Phys. Lett. 89, 043501 (2006)
  55. 20. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003)
  56. 21. Y.C. Chang, M.L. Huang, K.Y. Lee, Y.J. Lee, T.D. Lin, M. Hong, J. Kwo, T.S. Lay, C.C. Liao, K.Y. Cheng, Appl. Phys. Lett 92, 072901 (2008)
  57. 22. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, M. Hong, Appl. Phys. Lett. 87, 252104 (2005)
  58. 23. Ofer Sneh, Robert B.Clark-Phelps, Ana R.Londer gan, Jereld Winkler, Thomas E.Seidel,Thin Solid Films 402, 248 (2002).
  59. 25. K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong,and J. Kwo, Appl. Phys. Lett. 92, 252908 (2008)
  60. 26. H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, T. Gustafsson, and E. Garfunkel, Appl. Phys. Lett. 94, 222108 (2009).
  61. 27. D. Shahrjerdi, T. Akyol, M. Ramon, D. I. Garcia-Gutierrez, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 92, 203505 (2008).
  62. 28. C.L. Hinkle, M. Milojevic, E.M. Vogel, R.M. Wallace, Microelec. Eng. 86, 1544 (2009).
  63. 29. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnel, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 92, 071901 (2008)
  64. 31. Y.H. Chang, M.L. Huang, P. Chang, J.Y. Shen, B.R. Chen, C.L. Hsu, T.W. Pi, M. Hong, and J. Kwo, Microelec. Eng. 88, 1101 (2011).
  65. 32. Molecular beam epitaxy, edited by Alfred Cho, American Institute of Physics, New York (1994)
  66. 35. Chang and Francis Kai, GaAs high-speed devices: physics, technology, and circuit applications, Wiley, New York (1994)
  67. 38. T. Suntola and J. Antson, US 4058430 (1977)
  68. 39. Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson, Blackie and Son, London (1990).
  69. 40. Rikka L. Puurunen, J. Appl. Phys. 97, 121301 (2005)
  70. 41. M. Ritala and M. Leskelä, in Handbook of Thin Film Materials, edited by H. S. Nalwa Academic, San Diego, (2002), Vol. 1, pp. 103–159.
  71. 42. T. M. Mayer, Albuquerque,J. W. Elam and S. M. George, P. G. Kotula and R. S. Goeke, Appl. Phys. Lett. 82, 2883 (2003)
  72. 44. D. Hausmann, J. Becker, S. L. Wang, and R. G. Gordon, Science 298, 402 (2002).
  73. 46. “High-k Gate Dielectrcs”, edited by Michel Houssa, Institute of Physics (2004)
  74. 47. “Photoelectron Spectroscopy: Principles and Applications”, edited by Stefan Hüfner, Springer-Verlag, Berlin Heidelberg (1995)
  75. 48. Buddy D. Ratner and David G. Castner, in Surface Analysis-The Principal Techniques, edited by John C. Vickerman (Wiley, New York, 1997), Ch. 3., pp. 43-98
  76. 53. A. C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel, Mater. Sci. Semi. Processing 2, 103 (1999).
  77. 57. S. M. Sze, and K. K. Ng, Physics of Semiconductor Device, Wiley-Interscience (2007).
  78. 60. G. Brammertz, H.-C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 93, 183504 (2008)
  79. 61. Roman Engel-Herbert, Yoontae Hwang, and Susanne Stemmer, J. Appl. Phys. 108, 124101 (2010)
  80. 65. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. 16, 639 (2004).
  81. 67. W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, IEEE Electron Device Lett. 23, 649 (2002).
  82. 68. C. L. Hinkle, A. M. Sonnet, M. Milojevic, F. S. Aguirre-Tostado, H. C. Kim, J. Kim, R. M. Wallace, E. M. Vogel, Appl. Phys. Lett. 93, 113506 (2008)
  83. 69. C.-W. Cheng, J. Hennessy, D. Antoniadis, E. A. Fitzgerald, Appl. Phys. Lett. 95, 082106 (2009)
  84. 70. C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, R. M. Wallace, Appl. Phys. Lett. 94, 162101 (2009)
  85. 71. D. Shahrjerdi, D. I. Garcia-Gutierrez, T. Akyol, S. R. Bank, E. Tutuc, J. C. Lee, and S. K. Banerjee, Appl. Phys. Lett. 91, 193503 (2007)
  86. 73. L.G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Séméria, J. Non-Cryst. Solids 303, 17 (2002)
  87. 74. Y. Chang, F. Ducroquet, E. Gautier, O. Renault, J. Legrand, J.F. Damlencourt, F. Martin, Microelec. Eng. 72, 326 (2004)
  88. 75. H. B. Park, M. Cho, J. Park, S. W. Lee, and C. S. Hwang, J. Appl. Phys. 94, 3641 (2003)
  89. 76. Qi-Kun Xue, T. Hashizumec and T. Sakurai, Appl. Surf. Sci. 141, 244 (1999).
  90. 79. Y. J. Lee, C. H. Lee, L. T. Tung, T. H. Chiang, T. Y. Lai, J. Kwo, C.-H. Hsu, and M. Hong, J. Phys. D: Appl. Phys. 43, 135101 (2010).
  91. 80. É. O’Connor, S. Monaghan, R. D. Long, A. O’Mahony, I. M. Povey, K. Cherkaoui, M. E. Pemble, G. Brammertz, M. Heyns, S. B. Newcomb, V. V. Afanas’ev, and P. K. Hurley, Appl. Phys. Lett. 94, 102902 (2009).
  92. 81. C.A. Lin, H.C. Chiu, T.H. Chiang, T.D. Lin, Y.H. Chang, W.H. Chang, Y.C. Chang, W.–E. Wang, J. Dekoster, T.Y. Hoffmann, M. Hong, J. Kwo, Appl. Phys. Lett. 98, 062108 (2011)
  93. 82. Y.H. Chang, M.L. Huang, P. Chang, C.A. Lin, Y.J. Chu, B.R. Chen, C.L. Hsu, J. Kwo, T.W. Pi, M. Hong, Microelec. Eng. 88, 440 (2011).
  94. 84. M. Milojevic, F. S. Aguirre-Tostado, C. L. Hinkle, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 93, 202902 (2008).
  95. 86. W. Wang, C.L. Hinkle, E.M. Vogel, K. Cho, R.M. Wallace, Microelec. Eng. 88, 1061 (2011).
  96. 88. W. E. Spicer, N. Newman, C. J. Spindt, Z. Liliental-Weber, and E. R. Weber, J. Vac. Sci. Technol. A 8(3), 2084 (1990)
  97. 90. T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, Appl. Phys. Lett. 93, 033516 (2008).
  98. 91. T. D. Lin, P. Chang, Y. D. Wu, H. C. Chiu, J. Kwo, and M. Hong, J. Cryst. Growth 323, 518 (2011).
  99. 93. H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, and M. Heyns, Microelectron. Eng. 86, 1554 (2009).
  100. 94. H. Ishii, N. Miyata, Y. Urabe, T. Itatani, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Deura, M. Sugiyama, M. Takenaka, and S. Takagi, Appl. Phys. Express 2, 121101 (2009).
  101. 96. É. O'Connor, S. Monaghan, K. Cherkaoui, I. M. Povey, and P. K. Hurley, Appl. Phys. Lett. 99, 212901 (2011).
  102. 97. É. O’Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S. B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M. E. Pemble, R. M. Wallace, and P. K. Hurley, J. Appl. Phys. 109, 024101 (2011)
  103. 99. A. O'Mahony, S. Monaghan, G. Provenzano, I. M. Povey, M. G. Nolan, E. O'Connor, K. Cherkaoui, S. B. Newcomb, F. Crupi, P. K. Hurley, and M. E. Pemble, Appl. Phys. Lett. 97, 052904 (2010).
  104. 100. L. K. Chu, C. Merckling, A. Alian, J. Dekoster, J. Kwo, M. Hong, M. Caymax, and M. Heyns, Appl. Phys. Lett. 99 (2011).
  105. 101. Y. Hwang, V. Chobpattana, J. Y. Zhang, J. M. LeBeau, R. Engel-Herbert, and S. Stemmer, Appl. Phys. Lett. 98, 142901 (2011).
  106. 102. C. H. Hsu, P. Chang, W. C. Lee, Z. K. Yang, Y. J. Lee, M. Hong, J. Kwo, C. M. Huang, and H. Y. Lee, Appl. Phys. Lett. 89, 122907 (2006).
  107. 104. H.-C. Lin, W.-E. Wang, G. Brammertz, M. Meuris, and M. Heyns, Microelec. Eng. 86, 1154 (2009).
  108. 105. L. M. Terman, Solid-State Electron., 5, 285 (1962).
  109. 106. R. Castagne' and A. Vapaille, Surface Sci., 28, 557 (1971).
  110. 108. H. C. Lin, G. Brammertz, K. Martens, G. de Valicourt, L. Negre, W.-E. Wang, W. Tsai, M. Meuris, and M. Heyns, Appl. Phys. Lett. 94, 153508 (2009).
  111. 109. G. Brammertz, H. C. Lin, M. Caymax, M. Meuris, M. Heyns, and M. Passlack, Appl. Phys. Lett. 95, 202109 (2009).
  112. 111. G. Brammertz, H. C. Lin, K. Martens, A.-R. Alian, C. Merckling, J. Penaud, D. Kohen, W. E. Wang, S. Sioncke, A. Delabie, M. Meuris, M. R. Caymax, and M. Heyns, ECS Trans. 19(5), 375 (2009).
  113. 112. Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, in IEDM Tech. Dig., pp. 637-640 (2007)
  114. 113. Uttam Singisetti, Mark A. Wistey, Gregory J. Burek, Ashish K. Baraskar, Brian J. Thibeault, Arthur C. Gossard, Mark J. W. Rodwell, Byungha Shin, Eun J. Kim, Paul C. McIntyre, Bo Yu, Yu Yuan, Dennis Wang, Yuan Taur, Peter Asbeck, and Yong-Ju Lee, IEEE Electron Device Lett., 30, 1128 (2009)
  115. 114. H. J. Oh, J. Q. Lin, S. A. B. Suleiman, G. Q. Lo, D. L. Kwong, D. Z. Chi, and S. J. Lee, in IEDM Tech. Dig., pp. 339-342 (2009)
  116. 116. T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, Appl. Phys. Lett. 93, 033516 (2008).
  117. 117. Pen Chang, Han-Chin Chiu, Tsung-Da Lin, Mao-Lin Huang1, Wen-Hsin Chang, Shao-Yun Wu, Kang-Hua Wu, Minghwei Hong, and Jueinai Kwo, Applied Physics Express 4, 114202 (2011)