Reference
|
-
1. Xu, W. Z.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Zhao, B. H.; Jiang, L.; Lu, J. G.; He, H. P.; Zhang, S. B., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters 2006, 88.
連結:
-
2. Wei, Z. P.; Lu, Y. M.; Shen, D. Z.; Zhang, Z. Z.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., Room temperature p-n ZnO blue-violet light-emitting diodes. Applied Physics Letters 2007, 90 (4).
連結:
-
3. Jiao, S. J.; Zhang, Z. Z.; Lu, Y. M.; Shen, D. Z.; Yao, B.; Zhang, J. Y.; Li, B. H.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Applied Physics Letters 2006, 88 (3).
連結:
-
4. Kong, X. Y.; Wang, Z. L., Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters 2003, 3, 1625-1631.
連結:
-
5. Wang, X. D.; Summers, C. J.; Wang, Z. L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters 2004, 4 (3), 423-426.
連結:
-
6. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 2004, 16 (25), R829-R858.
連結:
-
7. Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters 2002, 81 (19), 3648-3650.
連結:
-
8. Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C., Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials 2003, 13 (10), 811-814.
連結:
-
10. Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J., Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials 2004, 16 (12), 1009.
連結:
-
13. Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C., Solution-processed ultraviolet photodetedtors based on colloidal ZnO nanoparticles. Nano Letters 2008, 8 (6), 1649-1653.
連結:
-
14. Liang, S.; Sheng, H.; Liu, Y.; Huo, Z.; Lu, Y.; Shen, H., ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225 (2-4), 110-113.
連結:
-
15. Sharma, P.; Sreenivas, K.; Rao, K. V., Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. Journal of Applied Physics 2003, 93 (7), 3963-3970.
連結:
-
17. Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T., Optically pumped lasing of ZnO at room temperature. Applied Physics Letters 1997, 70 (17), 2230-2232
連結:
-
19. Lee JM, Kim KK, Park SJ, Choi WK. Appl Phys Lett 78, 3842-3844 (2001).
連結:
-
21. Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7).
連結:
-
22. Schmidt-Mende, L.; MacManus-Driscoll, J. L., ZnO - nanostructures, defects, and devices. Materials Today 2007, 10 (5), 40-48.
連結:
-
27. Neumark, G. F., Achievement of well conducting wide band-gap semiconductors: Role of solubility and of nonequilibrium impurity incorporation. Physical Review Letters 1989, 62 (15), 1800-1803.
連結:
-
28. Van de Walle CG, Laks DB, Neumark GF, Pantelides ST. Phys. Rev. B 47, 9425-9434 (1993). Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7).
連結:
-
32. Kanai Y. Jpn. J. Appl. Phys., Part 1 30, 703-707 (1991).
連結:
-
33. Kanai Y. Jpn. J. Appl. Phys, Part 1 30, 2021-2022 (1991).
連結:
-
35. Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7).
連結:
-
36. Yamamoto T, Katayama-Yoshida H. Jpn J Appl Phys 38, L166-L169 (1999).
連結:
-
37. Duclere JR, Novotny M, Meaney A, O'Haire R, McGlynn E, Henry MO, Mosnier, JP. SUPERLATTICES AND MICROSTRUCTURES 38, 397-405 (2005)
連結:
-
40. Chen, L. L.; He, H. P.; Ye, Z. Z.; Zeng, Y. J.; Lu, J. G.; Zhao, B. H.; Zhu, L. P., Influence of post-annealing temperature on properties of ZnO : Li thin films. Chem. Phys. Lett. 2006, 420 (4-6), 358-361.
連結:
-
42. Zhang BY, Yao B, Li YF, Zhang ZZ, Li BH, Shan CX, Zhao DX, Shen DZ. APPLIED PHYSICS LETTERS 97, 222101 (2010) .
連結:
-
46. Wardle, M. G., J. P. Goss, et al. (2005). "Theory of Li in ZnO: A limitation for Li-based p-type doping." Physical Review B 71(15)
連結:
-
49. Jin, S.; Whang, D. M.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M., Scalable interconnection and integration of nanowire devices without registration. Nano Letters 2004, 4 (5), 915-919.
連結:
-
50. Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M., Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 2004, 84 (21), 4176-4178.
連結:
-
51. Song, Y.; Schmitt, A. L.; Jin, S., Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Letters 2007, 7 (4), 965-969.
連結:
-
52. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 2004, 16 (25), R829-R858.
連結:
-
53. Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F., Catalytic growth and characterization of gallium nitride nanowires. Journal of the American Chemical Society 2001, 123 (12), 2791-2798.
連結:
-
54. Jun, Z.; Xu, N.; Zhong, L. W., Dissolving behavior and stability of ZnO wires iin biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials 2006, 18 (18), 2432.
連結:
-
55. Nobis, T.; Kaidashev, E. M.; Rahm, A.; Lorenz, M.; Lenzner, J.; Grundmann, M., Spatially inhomogeneous impurity distribution in ZnO micropillars. Nano Letters 2004, 4 (5), 797-800.
連結:
-
56. Yu, D.; Hu, L.; Li, J.; Hu, H.; Zhang, H.; Zhao, Z.; Fu, Q., Catalyst-free synthesis of ZnO nanorod arrays on InP (001) substrate by pulsed laser deposition. Materials Letters 2008, 62 (25), 4063-4065.
連結:
-
57. Kim, M. S.; Yim, K. G.; Choi, H. Y.; Cho, M. Y.; Kim, G. S.; Jeon, S. M.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y., Thermal annealing effects of MBE-seed-layers on properties of ZnO nanorods grown by hydrothermal method. Journal of Crystal Growth 2011, 326 (1), 195-199.
連結:
-
59. Qiu JJ, Li XM, He WZ, Park SJ, Kim HK, Hwang YH, Lee JH, Kim YD. Nanotechnology 20, 155603 (2009).
連結:
-
61. Ma T, Guo M. Nanotechnology 18, 035605 (2007).
連結:
-
63. Laudise, R. A.; Ballman, A. A., HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE. Journal of Physical Chemistry 1960, 64 (5), 688-691.
連結:
-
64. Ding, M.; Zhao, D. X.; Yao, B.; Li, B. H.; Zhang, Z. Z.; Shen, D. Z., The p-type ZnO film realized by a hydrothermal treatment method. Applied Physics Letters 2011, 98 (6).
連結:
-
65. Bitenc, M.; Podbrscek, P.; Orel, Z. C.; Cleveland, M. A.; Paramo, J. A.; Peters, R. M.; Strzhemechny, Y. M., Correlation between Morphology and Defect Luminescence in Precipitated ZnO Nanorod Powders. Crystal Growth & Design 2009, 9 (2), 997-1001.
連結:
-
66. Fan, Z. Y.; Wang, D. W.; Chang, P. C.; Tseng, W. Y.; Lu, J. G., ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters 2004, 85 (24), 5923-5925.
連結:
-
67. Lee, J.; Cha, S.; Kim, J.; Nam, H.; Lee, S.; Ko, W.; Wang, K. L.; Park, J.; Hong, J., p-Type Conduction Characteristics of Lithium-Doped ZnO Nanowires. Advanced Materials 2011, 23 (36), 4183.
連結:
-
68. Park, W. I.; Kim, J. S.; Yi, G. C.; Bae, M. H.; Lee, H. J., Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Applied Physics Letters 2004, 85 (21), 5052-5054.
連結:
-
70. Law, J. B. K.; Thong, J. T. L., Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Applied Physics Letters 2006, 88 (13).
連結:
-
71. Li, Y.; Della Valle, F.; Simonnet, M.; Yamada, I.; Delaunay, J.-J., High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 2009, 20 (4).
連結:
-
72. Lu, J. G.; Zhang, Y. Z.; Ye, Z. Z.; Zeng, Y. J.; He, H. P.; Zhu, L. P.; Huang, J. Y.; Wang, L.; Yuan, J.; Zhao, B. H.; Li, X. H., Control of p- and n-type conductivities in Li-doped ZnO thin films. Applied Physics Letters 2006, 89 (11).
連結:
-
73. Major S, Kumar S, Bhatnagar M, Chopra KL. Applied Physics Letters 49, 394-396 (1986).
連結:
-
76. Dutta T, Gupta P, Gupta A, Narayan J. JOURNAL OF APPLIED PHYSICS 108, 083715 (2010).
連結:
-
78. Wardle, M. G., J. P. Goss, et al. (2005). "Theory of Li in ZnO: A limitation for Li-based p-type doping." Physical Review B 71(15).
連結:
-
79. Ghosh, T.; Basak, D., Effect of Cu-Li Co-Doping on the Structural, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films. Journal of the Electrochemical Society 2009, 156 (12), H916-H920.
連結:
-
80. 陳彥溥,水熱法摻鋰生長氧化鋅奈米柱性質研究,2011,清華大學,碩士論文
連結:
-
81. Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology 2006, 39 (1), 49-56.
連結:
-
82. Choi, Y.-S.; Kang, J.-W.; Hwang, D.-K.; Park, S.-J., Recent Advances in ZnO-Based Light-Emitting Diodes. Ieee Transactions on Electron Devices 2010, 57 (1), 26-41.
連結:
-
83. Bin Kwon, Y.; Shin, S. W.; Lee, H. K.; Lee, J. Y.; Moon, J. H.; Kim, J. H., Formation of ZnO thin films consisting of nano-prisms and nano-rods with a high aspect ratio by a hydrothermal technique at 60 degrees C. Current Applied Physics 2011, 11 (1), S197-S201.
連結:
-
84. Chang, W. Y.; Cheng, K. J.; Tsai, J. M.; Chen, H. J.; Chen, F.; Tsai, M. J.; Wu, T. B., Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied Physics Letters 2009, 95 (4).
連結:
-
參考文獻
-
9. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P., Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters 2003, 83 (1), 144-146.
-
11. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire dye-sensitized solar cells. Nature Materials 2005, 4 (6), 455-459.
-
12. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins,C.L.;To, B.; Noufi, R., 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics 2008, 16 (3), 235-239.
-
16. Zu P, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Koinuma K. Solid-State Commun 103, 459-463 (1997).
-
18. Wraback M, Shen H, Liang S, Gorla CR, Lu Y. Appl Phys Lett 74, 507-509 (1999).
-
20. Kucheyev SO, Bradley JE, Williams JS, Jagadish C, Swain MV. Appl Phys Lett 80, 956-958 (2002).
-
23. Myong SY, Baik SJ, Lee CH, Cho WY, Lim KS, Jpn. J. Appl. Phys Part2 36, L1078-L1081 (1997).
-
24. Ataev BM, Bagamadova AM, Djabrailov AM, Mamedo VV, Rabadanov RA. Thin Solid Films 260, 19-20 (1995).
-
25. Florescu D, Mourok LG, Pollack FH, Look DC, Cantwell G, Li X. J. Appl Phys 91, 890-892 (2002).
-
26. Laks DB, Van de Walle CG, Neumark GF, Pantelides ST. Materials Science Forum 83-87, 1225-1234 (1992).
-
29. Lu JG, Zhang YZ, Ye ZZ, Zeng YJ, He HP, Zhu LP, Huang JY, Wang L, Yuan J, Zhao BH, Li XH. APPLIED PHYSICS LETTERS 89, 112–113 (2006).
-
30. Wang DY, Zhou J, Liu GZ. Journal of Alloys and Compounds 481, 802–805 (2009).
-
31. Zeng YJ, Ye ZZ, Lu JG, Xu WZ, Zhu LP, Zhao BH. APPLIED PHYSICS LETTERS 89, 042106 (2006).
-
34. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H. Journal of Applied Physics 98, p.041301-1~041301-103 (2005).
-
38. Look DC, Jones RL, Sizelove JR, Garces NY, Giles NC, Halliburton LE. Phys. Status Solidi A 195, 171-177 (2003).
-
39. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T., Recent progress in processing and properties of ZnO. Progress in Materials Science 2005, 50 (3), 293-340.
-
41. Cong GW, Peng WQ, Wei HY, Han XX, Wu JJ, Liu XL, Zhu QS, Wang ZG. APPLIED PHYSICS LETTERS 88, 062110 (2006).
-
43. Lu JG, Zhang YZ, Ye ZZ, Zhu LP, Wang L, Zhao BH. APPLIED PHYSICS LETTERS 88, 222114 (2006).
-
44. Wanga XH, Yao B, Shena DZ, Zhanga ZZ, Lia BH, Weia ZP, Lua YM, Zhaoa DX, Zhanga JY, Fana XW, Guanc LX, Congc CX. Solid State Communications 141, 600–604 (2007).
-
45. Das SN, Choi JH, Kar JP, Lee TI, Myoung JM. Materials Chemistry and Physics 121, 472–476 (2010).
-
47. Janotti A, Van de Walle CG. PHYSICAL REVIEW B 76, 165202 (2007).
-
48. Lukas SM, MacManus-Driscoll JL. materialstoday 10, 40-48 (2007).
-
58. Perillat-Merceroz, G.; Jouneau, P. H.; Feuillet, G.; Thierry, R.; Rosina, M.; Ferret, P., MOCVD growth mechanisms of ZnO nanorods. In 16th International Conference on Microscopy of Semiconducting Materials, Walther, T. N. P. D. H. J. L. C. A. G., Ed. 2010; Vol. 209.
-
60. Li QW, Bian JM. Applied Surface Science 256, 1698-1702 (2010).
-
62. Wang SF, Tseng TY, Wang YR, Wang CY, Lu HC, Shih WL. International Journal of Applied Ceramic Technology 5, 419-429 (2008).
-
69. Keem, K.; Kim, H.; Kim, G. T.; Lee, J. S.; Min, B.; Cho, K.; Sung, M. Y.; Kim, S., Photocurrent in ZnO nanowires grown from Au electrodes. Applied Physics Letters 2004, 84 (22), 4376-4378.
-
74. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS. Applied Surface Science 158, 134-140 (2000).Lai LW and Lee CT. Materials Chemistry and Physics 110, 393-396 (2008).
-
75. Wang XH, Yao B, Shena DZ, Zhanga ZZ, Lia BH, Weia ZP, Lua YM, Zhaoa DX, Zhanga JY, Fana XW, Guanc LX, Congc CX. Solid State Communications 141, 600–604 (2007).
-
77. Lin BX, Fu ZX, Jia YB. APPLIED PHYSICS LETTERS 79, 943-945 (2001).
|