透過您的圖書館登入
IP:44.203.219.117
  • 學位論文

新穎型感光性壓克力寡聚物之合成與其性質評估與應用

Studies on the Preparations of Novel Photosensitive Resins and Their Applications

指導教授 : 李育德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要針對高分子系光阻合成與分析進行研究,可分為三部份,第一部份研究乃是利用三種環氧樹脂中環氧基(glycidyl group)的反應性,合成含有羧基並具有光反應性丙烯酸酯基的負型光阻寡聚高分子(negative-tone photoresist prepolymer),再將部份羧基與甲基丙烯酸缩水甘油酯(Glycidyl methacrylate,GMA)進行反應,以導入更多的光反應性官能基,以增強樹脂的感光性,並使用1H-NMR與 IR進行此一系列樹脂的結構鑑定。鹼液可顯影的負型光阻劑(alkaline-development negative-tone photoresist)乃是由上述合成樹脂、光起始劑與光反應性單體等成份組成,三種樹脂接上GMA後,在感度測試上,皆有明顯增加,其中phenol novolac改質的紫外光硬化樹脂,具有最佳的感度。在解析度測試上,經由SEM觀察,皆可達到10 μm或更好的解析度。將合成樹脂調配成PCB光阻劑。實際應用在工業測試上,接枝上GMA的cresol novolac型的感光樹脂與phenol novolac型的感光樹脂,具有比商業產品優異的感度,同時也通過其他的PCB光阻劑測試。 第二部份研究為開發新型光敏感預聚高分子(photosensitive prepolymer),使用甲基丙烯酸甲酯(methyl methacrylate,MMA),甲基丙烯酸(methacrylic acid,MA),苯乙烯(styrene)及羟乙基甲基丙烯酸甲酯(2-hydroethyl methacrylate,2-HMA)以自由基反應聚合而成具有酸根的共聚合體,PMMSH (poly(methyl methacrylate-co-methacrylic acid -co-styrene–co -2-hydroethyl methacrylate)),再以GMA與部份酸根反應,使共聚合體增加壓克力感光官能基成為光敏感預聚高分子,稱為PMMSHgG,並使用NMR及IR確認結構及官能基,並配成光阻可得到感度曲線及感光圖像。以此樹脂與乾式可剝塑溶膠及丙烯酸單體和光啟始劑混合,形成具有曝光顯影性的負型光阻,接著塗裝於銅箔基板(copper clad laminate)上,經過低溫預烤,使塗料變成無沾黏性(tackfree)的固態,使用具有圖形的底片, 置於此固態薄膜上經UV曝光(能量為400 mJ/cm2)後,以1% Na2CO3鹼液進行顯影,其Stouffer 21-step sensitivity guide可達9階及解析度為3.17 mil的圖像。再以此配方選用合適的PVC乳化共聚粉進行預烤,曝光與後烤得到無殘膠的可剝膜。此光阻薄膜可應用作保護膠,用於一些須要暫時保護的精密區塊,在製程結束後僅需要用物理力量即可移除,可避免使用化學剝離製程(如使用NaOH水溶液浸泡)而傷害被保護區域或其他零組件的問題。 第三部份研究是利用四甲酸二酐單體(3,3’,4,4’-benzophenonetetracar -boxylic acid dianhydride)及兩種二胺單體(4,4’-diamino-3,3’-biphenyldiol,HAB與2,4-diaminophenol dihydrochloride,DAP),合成一系列的聚醯胺酸(poly(hydroxyl amic acid)),並將丙烯酸酯基團接枝於其上,以獲得聚丙烯酸酯醯胺酸(poly(acrylate amic acid))。此poly(acrylate amic acid)具有可UV曝光及顯影之功能,因此可當做負型聚亞醯胺光阻(negativetone photosensitive polyimide,PSPI)樹脂。合成物經由核磁共振光譜(NMR)、傅立葉紅外線光譜(FTIR)及膠體滲透層析儀(GPC)進行化學結構及分子量的鑑定。在測定中發現poly(acrylate amic acid)分子量隨HAB含量增加而增大,原因為HAB比DAP反應性大因此聚合度增加。本研究亦利用上述合成物與其他功能性佐劑混合以調配高解析之負型聚亞醯胺光阻劑,主要成份是以PSPI光阻與poly(acrylate amic acid)為樹脂、2-benzyl-2-N,N-dimethylamino -1-(4-morpholinophenyl) butanone (IRG369)與異丙基噻吨酮為光啟始劑、tetra(ethylene glycol) diacrylate為交聯劑,再以三溴甲基苯基碸為感光助劑,經由相關測試後,可得知此PSPI光阻劑之感光性(photosensitivity)為200 mJ/cm2與contrast為1.78,然而在300oC的亞胺化(imidization)反應後,可觀察到解析度為10 μm的顯像圖。

並列摘要


This study selected 3 types of epoxy resin, including cresol novolac (E1), phenol novolac epoxy resin (E2) ,and bisphenol A (E3). Utlizing the glycidyl group of the epoxy resin, we synthesized resins with carboxyl acid and photoreactive functional group(E1-2,E2-2,E3-2). In order to enhance the photosensitive character, part of the carboxyl groups were reacted with GMA (Glycidyl Methacrylate) to obtain E1-3,E2-3,E3-3. Thus there are six synthetic resins and their structures were identified E3-3 by nuclear magnetic resonance spectroscopy (1H-NMR) and infrared spectroscopy (IR). photoresists were formulated with above synthetic resins, photoinitiator and photoreactive monomer and their exposure properties were also tested. It was found that E1-3,E2-3,and E3-3 exhibit better sensitivity than E1-2,E2-2,E3-2, while is the best. For PCB application, they all passed solder test ,while E1-3 and E2-3 had better sensitivity than the corresponding commercial product. Methyl methacrylate, methacrylic acid, styrene and 2-hydroethyl methacrylate were used to synthesize a prepolymer with carboxylic acid group through free-radical polymerization(PMMSH). Glycidyl methacrylate was then added to react with carboxylic acid groups of PMMSH to form photosensitive copolymer PMMSHgG. Nuclear magnetic resonance and infrared were used to confirm the structures and functional group of the prepolymer and the copolymer while GPC was employed to determine the molecular weight. The sensitivity and resolution of the copolymers were obtained through characteristic exposure curve and SEM observation, respectively. PMMSHgG was also mixed with dry-peelable plastisol, acrylic acid monomer, and photoinitiator to form a photo-imageable dry-peelable plastisol. A suitable peelable composition without scum after UV exposure and post-baking was identified. Dianhydride monomer, 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA), and two diamine monomers, 4,4’-diamino-3,3’-biphenyldiol (HAB) and 2,4-diaminophenol dihydrochloride (DAP), were used to synthesize a series of poly(hydroxyl amic acid). Further functionalization by grafting acrylate groups yields the corresponding poly(acrylate amic acid) which could be used as a negative-tone photosensitive polyimide. The analysis of chemical composition and molecular weight of these poly(amic acid) determined by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy and gel permeation chromatography (GPC), respectively. It revealed that the molecular weight of the poly(hydrxoyl amic acid) increased with the molar content of HAB in the feedstock, because HAB exhibited higher polymerization reactivity than DAP. Moreover, the degree of grafting acrylate groups onto poly(hydroxyl amic acid) was determined by 1H-NMR spectroscopy. Photoresist was formulated by adding 2-benzyl-2-N,N- dimethylamino-1-(4-morpholinophenyl) butanone (IRG369) and isopropylthioxanthone (ITX) as photoinitiator, tetra(ethylene glycol) diacrylate (TEGDA) as a crosslinker and tribromomethyl phenyl sulfone (TBPS) as a photosensitizer. The photosensitive polyimide precursor exhibited a photosensitivity of 200mJ/cm2 and a contrast of 1.78. A pattern with a resolution of 10μm was observed in an optical micrograph after thermal imidization at 300oC.

並列關鍵字

無資料

參考文獻


[ ] C. Decker, Pigment & Resin Technology, 30(5), 278-286 (2001)
[ ] A. Reiser, Photoreactive Polymers: The Science and Technology of Resists, John wiley & Sons (1989)
[ ] N.S. Allen, M.S. Johnson, P.K.T. Oldering and S. Salim, Chemistry& technology of UV & EB formulations for coatings, INKS &PAINTS, SITA Technology London, England (1991)
[ ] J. Segurola, N. S. Allen, M. Edge, A. Parrondo, and
I. Roberts, Journal of Photochemistry and Photobiology A:

延伸閱讀