Title

Synthesis and characterization of cyclopentadithiophene (CPDT)-naphthalene (NDI) push-pull ABA-type oligomers and copolymers

DOI

10.6843/NTHU.2013.00347

Authors

李淳漢

Key Words

conjugated polymer ; n-type material ; C-H direct arylation

PublicationName

清華大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

堀江正樹

Content Language

英文

Chinese Abstract

This thesis presents the synthesis, characterization, and device performance of a series of cyclopentadithiophene (CPDT)-naphthalene (NDI) donor-acceptor (D-A) ABA-type oligomers and copolymers. These oligomers composed of CPDT-NDI-CPDT unit with various alkyl chains are successfully synthesized via direct arylation using palladium complex catalyst. The corresponding copolymers are synthesized by oxidative polymerization using FeCl3. All of oligomers and copolymers are systematically characterized and analyzed by gel permeation chromatography (GPC), 1H NMR and UV-vis-NIR absorption spectroscopies, cyclic voltammetry (CV), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). GPC measurement shows that these polymers are of relatively high molecular weight, Mn = 21800-76000. These copolymers show deep-red absorption including near-infrared region (up to 1100 nm) due to their quite narrow bandgap. Impressively, the electrochemical property of the resulting copolymers exhibits lowest unoccupied molecular orbital (LUMO) at about - 3.7 eV, which has been considered as the favorable level as n-type materials for use in organic photovoltaic devices (OPVs). These copolymers exhibit only n-type property giving the highest electron mobility of 3.7 x 10-4 cm2 V-1 s-1 in organic field-effect transistor because of its strong intermolecular interaction. On the other hand, the copolymer with highly soluble branched alkyl chain shows the highest power conversion efficiency of 0.25% in organic photovoltaic device. To investigate the versatile reactivity of C-H direct arylation, the copolymers composed of above unit with benzothiadiazole, thiophene, or bithiophene are also II synthesized by direct arylation polymerization. All polymers have higher molecular weight (Mn = 18000-52000) than the alternative polymers of dibromo-NDI and CPDT obtained from similar reaction condition. The optical and electrochemical properties of these polymers are measured by UV-vis-NIR spectra, 1H-NMR, GPC and CVs.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. 2. H. Sirringhaus, Adv. Mater. 2005, 17, 2411.
    連結:
  2. 3. A. Facchetti, Mater. Today. 2007, 10, 28.
    連結:
  3. 6. C. Reese, W. J. Chung, M.-m. Ling, M. Roberts, Z. Bao, Appl. Phys. Lett. 2006, 89, 202108.
    連結:
  4. 8. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
    連結:
  5. 17. A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656.
    連結:
  6. 20. T. B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, Adv. Mater. 2005, 17, 2315
    連結:
  7. 23. G. Horowitz, Adv. Mater. 1998, 10, 365.
    連結:
  8. 26. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
    連結:
  9. 27. B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
    連結:
  10. 31. F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394.
    連結:
  11. 32. C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    連結:
  12. 41. G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153.
    連結:
  13. 42. A. Facchetti, Chem. Mater. 2011, 23, 733–758
    連結:
  14. 43. Sista, S. et al. Adv. Mater. 2010, 22, 380.
    連結:
  15. 45. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868
    連結:
  16. 48. G. Brocks, A. Tol, J. Phys. Chem., 1996, 100, 1838.
    連結:
  17. 49. T.J. Prosa, M.J. Winokur, J. Moulton, P. Smith, A.J. Heeger, Macromolecules. 1992, 25, 4364.
    連結:
  18. 50. N. Miyaura, Cross-Coupling Reactions: A Practical Guide, Springer, New York, 2002.
    連結:
  19. 51. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457
    連結:
  20. 53. R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461
    連結:
  21. 54. J. K. Stille, Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
    連結:
  22. 55. D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
    連結:
  23. 56. Z. Bao, W. K. Chan, L. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
    連結:
  24. 57. P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704 – 4734
    連結:
  25. 58. D. J. Schipper, Keith Fagnou, Chem. Mater. 2011, 23, 1594–1600
    連結:
  26. 59. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792
    連結:
  27. 60. M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496
    連結:
  28. 61. G. C. Welch, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 4632–4644
    連結:
  29. 65. A. Facchetti, Chem. Mater. 2011, 23, 733
    連結:
  30. 68. Y. Liang, L. Yu, Acc. Chem. Res. 2010, 43, 1227.
    連結:
  31. 70. H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607−632
    連結:
  32. 72. P. Coppo, M. L. Turner, J. Mater. Chem. 2005, 15, 1123
    連結:
  33. 73. U. Asawapirom, U. Scherf, Macromol. Rapid. Commun. 2001, 22, 746.
    連結:
  34. 80. X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333.
    連結:
  35. 82. L. L. Miller, K. R. Mann, Acc. Chem. Res. 1996, 29, 417.
    連結:
  36. 87. M. B. Kim, D. W. Dixon, J. Phys. Org. Chem. 2008, 21 731
    連結:
  37. 91. K. Yamazaki , J. Kuwabara , T. Kanbara, Macromol. Rapid Commun. 2013, D, 69−73
    連結:
  38. 93. P. Berrouard, A. Najari, A. Pron, D. Gendron, P. Morin, J. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem., Int. Ed. 2012, 51, 2068.
    連結:
  39. 94. A. Facchetti, L. Vaccaro and A. Marrocchi, Angew. Chem., Int. Ed., 2012, 51, 3520–3523.
    連結:
  40. 96. S. W. Chang, H. Waters, J. Kettle, Z. R. Kuo, C. H. Li, C. Y. Yu, M. Horie, Macromol. Rapid Commun., 2012, 33, 1927−1932.
    連結:
  41. 1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters. 1977, 39, 1098
  42. 4. X. W. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268.
  43. 5. D. J. Gundlach, J. A. Nichols, L. Zhou, T. N. Jackson, Appl. Phys. Lett. 2002, 80, 2925.
  44. 7. Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169
  45. 9. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
  46. 10. D. M. deLeeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
  47. 11. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao,; Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
  48. 12. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11331.
  49. 13. D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, J. T. Carey, Chem. Mater. 2008, 20, 7486
  50. 14. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121.
  51. 15. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. d. Leeuw, Appl. Phys. Lett. 2006, 89, 213504.
  52. 16. T. B. Singh, N. Marjanovic, P. Stadler, M. Auinger, G. J. Matt, S. Gunes, N. S. Sariciftci, R. Schwodiauer, S. Bauer, J. Appl. Phys. 2005, 97, 083714.
  53. 18. H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
  54. 19. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
  55. 21. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat. Mater. 2003, 2, 678.
  56. 22. Z. Chen, M. J. Lee, R. Shahid Ashraf, Y. Gu, S. Albert-Seifried, M. Meedom Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch and H. Sirringhaus, Adv. Mater., 2012, 24, 647–652.
  57. 24. Z. Bao, J. A. Rogers, H. E. J. Katz, Mater. Chem. 1999, 9, 1895.
  58. 25. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
  59. 28. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre´das, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
  60. 29. Z. Bao, J. Locklin, Organic Field-Effect Transistors, CRC Press: Taylor & Francis Group, 2007
  61. 30. J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791
  62. 33. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 1995, 270, 1789
  63. 34. J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res., 2009, 42, 1700
  64. 35. D. Venkataraman, S. Yurt, B. H. Venkatraman, N. Gavvalapalli, J. Phys. Chem. Lett. 2010, 1, 947–958
  65. 36. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
  66. 37. L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, J. Hou, Macromolecules 2012, 45, 6923
  67. 38. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
  68. 39. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
  69. 40. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science. 317, 222 (2007)
  70. 44. U. Salzner, J. B. Lagowski, P.G. Pickup, R.A. Poirier, Synth Met 1998, 96, 177.
  71. 46. McCullough RD, Ewbank PC. Head-to-tail coupled poly(3-alkylthiophene) and its derivatives. In: Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers. 2nd ed. New York: Marcel Dekker; 1998. p. 225.
  72. 47. E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym Bull. 1992, 29, 119.
  73. 52. M. Sato, N. Miyaura, A. Suzuki, Chem. Lett. 1989, 1405
  74. 62. G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Am. Chem. Soc. 2012, 134, 539
  75. 63. J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130
  76. 64. S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324
  77. 66. K. Zhang, B. Tieke, J. C. Forgie, F. Vilela, P. J. Skabara, Macromolecules. 2012, 45, 743
  78. 67. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15
  79. 69. A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A, B. Holmes, Chem. Rev. 2009, 109, 897–1091
  80. 71. P. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater. 2011, 23, 456–469
  81. 74. A. Kraak, A. K. Wiersma, P. Jordens, H. Wynberg, Tetrahedron. 1968, 24, 3381.
  82. 75. G. Zotti, G. Schiavon, A. Berlin, G. Fontana, G. Pagani, Macromolecules. 1994, 27, 1938
  83. 76. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
  84. 77. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater., 2007, 6, 497.
  85. 78. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, J. Am. Chem. Soc., 2012, 134, 14932
  86. 79. X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe, M. D. Watson, Chem. Mater. 2012, 24, 1434
  87. 81. H. Vollmann, H. Becker, M. Corell, H. Streeck, Liebigs Ann. Chem., 1937, 531, 1.
  88. 83. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature. 2000, 404, 478–481.
  89. 84. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature. 2009, 457, 679.
  90. 85. E. Ahmed, G. Q. Ren, F. S. Kim, E. C. Hollenbeck, S. A. Jenekhe, Chem. Mater. 2011, 23, 4563
  91. 86. M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2012, 22, 381.
  92. 88. M. R. Andersson, D. Selse, M. Berggren, H. Jarvinen, T. Hjertberg, O. Inganas, O. Wennerstrom and J.-E. Osterholm, Macromolecules. 1994, 27, 6503
  93. 89. M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Adv. Energy Mater. 2012, 2, 369
  94. 90. M. M. Durban, P. D. Kazarinoff, C. K. Luscombe, Macromolecules. 2010, 43, 6348
  95. 92. H. Zhao, C. Y. Liu, S. C. Luo, B. Zhu, T. H. Wang, H. F. Hsu, H. h. Yu, Macromolecules 2012, 45, 7783−7790
  96. 95. Q. Wang, R. Takita, Y. Kikuzaki and F. Ozawa, J. Am.Chem. Soc., 2010, 132, 11420–11421
  97. 97. T. Okazawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. Soc., 2002, 124, 5286-5287
  98. 98. A. E. Rudenko, C. A. Wiley, S. M. Stone, J. F. Tannaci, B. C.Thompson, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3691–3697.
  99. 99. Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro. Lett. 2012, 1, 67–70.
  100. 100. K. Okamoto, J. B. Housekeeper, F. E. Michael, and C, K. Luscombe, Polym. Chem., 2013, 4, 3499–3506
  101. 101. J. Zhou, S. Xie, E. F. Amond, M. L. Becker, Macromolecules, 2013, 46 (9), 3391–3394