Title

石墨烯/四氧化三鐵多層複合結構在高效能鋰離子電池陽極上之應用

Translated Titles

Graphene/Fe3O4 Hierarchical Sandwich Structure as Anode for High Performance Lithium-Ion Batteries

DOI

10.6843/NTHU.2013.00497

Authors

高義程

Key Words

石墨烯 ; 四氧化三鐵 ; 鋰離子電池 ; Graphene ; Iron Oxide ; Lithium-ion battery

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

闕郁倫;謝光前;周立人

Content Language

英文

Chinese Abstract

近年來,隨著消費性電子產品的快速發展,鋰離子二次電池的需求量也越來越大。雖然鋰電池的研究已經持續了超過40年,但鋰電池仍然存在著一些問題,其中最大的問題在於電池的可靠度以及電池容量。目前,各界的研究團隊們主要專注於開發更高容量、循環壽命更長以及更安全、穩定的材料。 本研究中,使用石墨烯/四氧化三鐵多層複合結構來做為鋰電池的負極。由於四氧化三鐵擁有許多良好的特性,例如高比容量、價格低廉、含量豐富、無毒、安全性高以及對環境無害等特性,所以此結構可望用來改良目前商業化電池所使用的石墨負極。本研究使用熱分解法來合成四氧化三鐵奈米顆粒,並進一步利用TEM、XRD及FT-IR等技術來分析所合成的奈米顆粒。接著,將四氧化三鐵奈米顆粒與石墨烯混合,製作成多層複合結構,最後再以爐管於300℃進行熱處理。在分析的部分,利用SEM、TEM來觀察複合結構的表面形貌,並使用XRD鑑定其結構,最後再透過FT-IR的分析,來確定四氧化三鐵奈米顆粒表面的油酸是否已經由300℃熱處理而除去。此外,由四點探針的電性量測結果可知,電子確實如同預期般藉由石墨烯來傳導。 為了進一步瞭解此結構的電化學性質,我們在手套箱中將此多層複合結構進行半電池組裝,並藉由定電流量測法以0.1 C的充放電速率對所組裝完成的電池作量測。由得到的充放電曲線可知,四氧化三鐵的特徵電壓平台確實出現在此曲線中,但與已發表的文獻相比較,電容量值偏低。若能進一步調整四氧化三鐵與石墨烯的比例,將四氧化三鐵層的厚度降低,可望改善此現象,並得到較好的電池特性。

English Abstract

The demand for lithium-ion batteries is ascending in the past few years due to the fast growth of a variety of consumer electronics. Although the study of rechargeable lithium batteries has been conducted for more than 40 years, some problems still remain, including reliability of electrodes and capacity of batteries. Therefore, materials with high specific capacity, long cycle life, and good safety are still widely investigated now. In this study, graphene/Fe3O4 sandwich structure was introduced as the anode of lithium-ion batteries and it has the potential to replace graphite, which is used as the anode in commercial lithium-ion batteries, due to the charming features of Fe3O4, such as high specific capacity, low cost, abundant in earth, nontoxicity, good safety, and eco-friendly property. We synthesized Fe3O4 nanoparticles by thermal decomposition method. The as-prepared nanoparticles were examined and analyzed by TEM, XRD and FT-IR. The Fe3O4 nanoparticles were further mixed with CVD graphene to form graphene/Fe3O4 sandwich structure, followed by annealed at 300℃ in Ar atmosphere in a furnace tube. The morphology and phase of graphene/Fe3O4 sandwich structure were observed and investigated by SEM, TEM, and XRD. FT-IR was also used to confirm the absence of oleic acid after annealing. The results of four probe measurement show that the electrons are transported by graphene in the sandwich structure, which is the same as expectation. In order to know the electrochemical properties of graphene/Fe3O4 sandwich structure, coin-type half cells (CR2032) were assembled with the as-prepared graphene/Fe3O4 sandwich structure as the anode in an argon-filled glove box, followed by measured via galvanostatic cycling at 0.1 C rate. The characteristic voltage plateaus of Fe3O4 were appeared in the charge/discharge profiles, but the capacity of graphene/Fe3O4 sandwich structure in this work is lower than the reported data. It is expected that the performance will be further improved if the ratio of Fe3O4 nanoparticles and graphene is adjusted.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. [1] A. Robert Armstrong and Peter G. Bruce
    連結:
  2. “Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries”
    連結:
  3. Nature (1996), 381, 499-500
    連結:
  4. “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells”
    連結:
  5. J. Electrochem. Soc. (1991), 138, 2859-2864
    連結:
  6. “Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2”
    連結:
  7. J. Electrochem. Soc. (1992), 139, 2091-2097
    連結:
  8. [4] Kazunori Ozawa
    連結:
  9. “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system”
    連結:
  10. Solid State Ionics (1994), 69, 212-221
    連結:
  11. “Rechargeable LiNiO2/Carbon Cells”
    連結:
  12. J. Electrochem. Soc. (1991), 138, 2207-2211
    連結:
  13. “Mechanisms for Lithium Insertion in Carbonaceous Materials”
    連結:
  14. Science (1995), 270, 590-593
    連結:
  15. [7] Martin Winter, Jürgen O. Besenhard, Michael E. Spahr and Petr Novák
    連結:
  16. “Insertion Electrode Materials for Rechargeable Lithium Batteries”
    連結:
  17. Adv. Mater. (1998), 10, 725-763
    連結:
  18. [8] Yeon-Bok Jeong and Dong-Won Kim
    連結:
  19. “Cycling performances of Li/LiCoO2 cell with polymer-coated separator”
    連結:
  20. Electrochim. Acta (2004), 50, 323–326
    連結:
  21. “Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure”
    連結:
  22. J. Membr. Sci. (2007), 300, 172–181
    連結:
  23. [10] A. P. Alivisatos
    連結:
  24. “Semiconductor Clusters, Nanocrystals, and Quantum Dots”
    連結:
  25. Science (1996), 271, 933 - 937
    連結:
  26. [11] Yi-Jen Wu, Chin-Hua Hsieh, Po-Ham Chen, Jing-Yang Li, Li-Jen Chou and Lih-Juann Chen
    連結:
  27. “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires”
    連結:
  28. ACS Nano (2010), 4, 1393-1398
    連結:
  29. [12] Minbaek Lee, Chih-Yen Chen, Sihong Wang, Seung Nam Cha, Yong Jun Park, Jong Min Kim, Li-Jen Chou, and Zhong Lin Wang
    連結:
  30. “A Hybrid Piezoelectric Structure for Wearable Nanogenerators”
    連結:
  31. Adv. Mater. (2012), 24, 1759-1764
    連結:
  32. “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”
    連結:
  33. Science (2000), 287, 637-640
    連結:
  34. “A Carbon Nanotube Field-Emission Electron Source”
    連結:
  35. Science (1995), 270, 1179-1180
    連結:
  36. [15] J. W. Kang, D. H. Kim, V. Mathew, J. S. Lim, J. H. Gim, and J. Kim
    連結:
  37. “Particle Size Effect of Anatase TiO2 Nanocrystals for Lithium-Ion Batteries”
    連結:
  38. J. Electrochem. Soc. (2011), 158, A59-A62
    連結:
  39. [16] Shantanu K. Behera
    連結:
  40. “Facile synthesis and electrochemical properties of Fe3O4 nanoparticles for Li ion battery anode”
    連結:
  41. J. Power Sources (2011), 196, 8669-8674
    連結:
  42. “A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries”
    連結:
  43. Science (2011), 334, 75-79
    連結:
  44. [18] Shu Luo, Ke Wang, Jiaping Wang, Kaili Jiang, Qunqing Li, and Shoushan Fan
    連結:
  45. “Binder-Free LiCoO2/Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries”
    連結:
  46. Adv. Mater. (2012), 24, 2294–2298
    連結:
  47. “Binder-Free Electrode Fabrication by Electroless-Electrolytic Method”
    連結:
  48. “Influence of carbon black and binder on Li-ion batteries”
    連結:
  49. J. Power Sources (2001), 101, 1-9
    連結:
  50. “Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries”
    連結:
  51. J. Power Sources (2002), 109, 422-426
    連結:
  52. “Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability”
    連結:
  53. Electrochim. Acta (2012), 67, 187-193
    連結:
  54. “Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application”
    連結:
  55. Angew. Chem. Int. Ed. (2007), 46, 1222–1244
    連結:
  56. [24] Ajay Kumar Gupta, Mona Gupta
    連結:
  57. “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications”
    連結:
  58. Biomaterials (2005), 26, 3995–4021
    連結:
  59. “One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles”
    連結:
  60. Adv. Mater. (2005), 17, 1001-1005
    連結:
  61. “Structural and morphological features of concentric iron oxide/carbon nanotubes obtained from phospholipids”
    連結:
  62. J. Mater. Chem. (2010), 20, 5748–5755
    連結:
  63. [27] Kyo-Chang Choi, Eun-Kyoung Lee, and Sei-Young Choi
    連結:
  64. “Electrical and Physical Characterization of Fe3O4-impregnated Elastomeric Composites”
    連結:
  65. J. Ind. Eng. Chem. (2004), 10, 402-408
    連結:
  66. [28] R. M. Cornell and U. Schwertmann
    連結:
  67. “The iron oxides : structure, properties, reactions, occurrences, and uses”
    連結:
  68. “Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries”
    連結:
  69. J. Power Sources (2013), 222, 32-37
    連結:
  70. [30] Sungwook Ko, Jung-In Lee, Hee Seung Yang, Soojin Park, and Unyong Jeong
    連結:
  71. “Mesoporous CuO Particles Threaded with CNTs for High-Performance Lithium-Ion Battery Anodes”
    連結:
  72. Adv. Mater. (2012), 24, 4451–4456
    連結:
  73. “Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method”
    連結:
  74. Electrochim. Acta (2012), 76, 383-388
    連結:
  75. “Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries”
    連結:
  76. Electrochim. Acta (2011), 56, 4960-4965
    連結:
  77. [33] Yu-Guo Guo, Yong-Sheng Hu, Wilfried Sigle, and Joachim Maier
    連結:
  78. “Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks”
    連結:
  79. Adv. Mater. (2007), 19, 2087-2091
    連結:
  80. “Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles”
    連結:
  81. Chem. Mater. (1996), 8, 2209-2211
    連結:
  82. “A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides”
    連結:
  83. J. Am. Chem. Soc. (1999), 121, 11595-11596
    連結:
  84. “Monodisperse MFe2O4(M = Fe, Co, Mn) Nanoparticles”
    連結:
  85. J. Am. Chem. Soc. (2004), 126, 273-279
    連結:
  86. [37] JongNam Park, KwangJin An, YoSun Hwang, Je-Geun Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, Nong-Moon Hwang and TaegHwan Hyeon
    連結:
  87. “Ultra-large-scale syntheses of monodisperse nanocrystals”
    連結:
  88. Nat. Mater. (2004), 3, 891-895
    連結:
  89. [38] Frank schwierz
    連結:
  90. “Graphene transistors”
    連結:
  91. Nat. Nanotech. (2010), 5, 487-496
    連結:
  92. [39] Martin Pumera
    連結:
  93. “Graphene in biosensing”
    連結:
  94. Mater. Today (2011), 14, 308-315
    連結:
  95. “Three-dimensional graphene network assisted high performance dye sensitized solar cells”
    連結:
  96. J. Power Sources (2013), 234, 60-68
    連結:
  97. [41] Martin Pumera
    連結:
  98. “Graphene-based nanomaterials for energy storage”
    連結:
  99. Energy Environ. Sci. (2011), 4, 668–674
    連結:
  100. “Graphene-based materials for energy applications”
    連結:
  101. MRS Bull. (2012), 37, 1265-1272
    連結:
  102. [43] Virendra Singh, Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker, Sudipta Seal
    連結:
  103. “Graphene based materials: Past, present and future”
    連結:
  104. Prog. Mater Sci. (2011), 56, 1178-1271
    連結:
  105. “Electric Field Effect in Atomically Thin Carbon Films”
    連結:
  106. Science (2004), 306, 666-669
    連結:
  107. “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”
    連結:
  108. Nat. Nanotech. (2008), 3, 270-274
    連結:
  109. [46] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong and Sumio Iijima
    連結:
  110. “Roll-to-roll production of 30-inch graphene films for transparent electrodes”
    連結:
  111. Nat. Nanotech. (2010), 5, 574-578
    連結:
  112. “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”
    連結:
  113. Nano Lett. (2009), 9, 4268-4272
    連結:
  114. “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”
    連結:
  115. Nano Lett. (2009), 9, 30-35
    連結:
  116. [49] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo and Rodney S. Ruoff
    連結:
  117. “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes”
    連結:
  118. Nano Lett. (2009), 9, 4359-4363
    連結:
  119. “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces”
    連結:
  120. Nano Lett. (2010), 10, 1542–1548
    連結:
  121. “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition”
    連結:
  122. Nano Lett. (2011), 11, 3612 – 3616
    連結:
  123. “A SnO2/graphene composite as a high stability electrode for lithium ion batteries”
    連結:
  124. Carbon (2011), 49, 133-139
    連結:
  125. “Mn3O4 - Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries”
    連結:
  126. J. Am. Chem. Soc. (2010), 132, 13978–13980
    連結:
  127. [54] Schroder, Dieter K.
    連結:
  128. “Semiconductor material and device characterization”
    連結:
  129. [55] Schrader, Bernhard.
    連結:
  130. “Raman/Infrared Atlas of Organic Compounds”
    連結:
  131. “Automated solid-phase extraction hyphenated to voltammetry for the determination of quercetin using magnetic nanoparticles and sequential injection lab-on-valve approach”
    連結:
  132. [57] Hao Liu, Guoxiu Wang, Jiazhao Wang, David Wexler
    連結:
  133. “Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries”
    連結:
  134. Electrochem. Commun. (2008), 10, 1879-1882
    連結:
  135. [58] Chunmei Ban, Zhuangchun Wu, Dane T. Gillaspie, Le Chen, Yanfa Yan, Jeffrey L. Blackburn, and Anne C. Dillon
    連結:
  136. “Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode”
    連結:
  137. Adv. Mater. (2010), 22, E145-E149
    連結:
  138. “Functional Materials for Rechargeable Batteries”
    連結:
  139. Adv. Mater. (2011), 23, 1695-1715
    連結:
  140. “α- Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries”
    連結:
  141. J. Phys. Chem. Lett. (2011), 2, 2885 - 2891
    連結:
  142. [61] 藍弋丰 (2013/05/21)。
    連結:
  143. [2] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon and S. Colson
  144. [3] Jan N. Reimers and J. R. Dahn
  145. [5] J. R. Dahn, U. von Sacken, M. W. Juzkow and H. Al-Janaby
  146. [6] J. R. Dahn, Tao Zheng, Yinghu Liu and J. S. Xue
  147. [9] M.Y. Jeon and C.K. Kim
  148. [13] Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly and Rodney S. Ruoff
  149. [14] Walt A. de Heer, A. Chatelain, D. Ugarte
  150. [17] Igor Kovalenko, Bogdan Zdyrko, Alexandre Magasinski, Benjamin Hertzberg, Zoran Milicev, Ruslan Burtovyy, Igor Luzinov, Gleb Yushin
  151. [19] Jamie Gomez, Egwu E. Kalu, Ruben Nelson, Charlemagne Akpovo, Mark H. Weatherspoon, and Jim P. Zheng
  152. ECS Electrochemistry Letters (2012), 1, D25-D28
  153. [20] L. Fransson, T. Eriksson, K. Edstrӧm, T. Gustafsson, J. O. Thomas
  154. [21] S. S. Zhang, T. R. Jow
  155. [22] Meng-Yuan Li, Yan Wang, Chun-Ling Liu, Hao Gao, Wen-Sheng Dong
  156. [23] An-Hui Lu, E. L. Salabas, and Ferdi Schűth
  157. [25] Zhen Li, Li Wei, Mingyuan Gao and Hao Lei
  158. [26] Min Yu, Jane Howe, Kyunghoon Jeong, Inbo Shim, Woochul Kim, Chulsung Kim, Jaepyoung Ahn, Jaegab Lee and Marek W. Urban
  159. Wiley-VCH (2003)
  160. [29] Jiazheng Wang, Ning Du, Hao Wu, Hui Zhang, Jingxue Yu, Deren Yang
  161. [31] Koichi Ui, Soshi Kawamura, Naoaki Kumagai
  162. [32] X.H. Huang, X.H. Xia, Y.F. Yuan, F. Zhou
  163. [34] Young Soo Kang, Subhash Risbud, John F. Rabolt, and Pieter Stroeve
  164. [35] Jӧrg Rockenberger, Erik C. Scher, and A. Paul Alivisatos
  165. [36] Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, and Guanxiong Li
  166. [40] Bo Tang, Guoxin Hu, Hanyang Gao, Zixing Shi
  167. [42] Jun Liu, Yuhua Xue, Mei Zhang, and Liming Dai
  168. [44] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov
  169. [45] Goki Eda, Giovanni Fanchini and Manish Chhowalla
  170. [47] Xuesong Li, Weiwei Cai, Luigi Colombo, and Rodney S. Ruoff
  171. [48] Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S. Dresselhaus, and Jing Kong
  172. [50] Ariel Ismach, Clara Druzgalski, Samuel Penwell, Adam Schwartzberg, Maxwell Zheng, Ali Javey, Jeffrey Bokor and Yuegang Zhang
  173. [51] Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu, Yi-Te Li, Keng-Ku Liu, Wenjing Zhang, Shi-Yen Lin, Zheng-Yu Juang, Yuan-Liang Zhong, Fu-Rong Chen and Lain-Jong Li
  174. [52] Xuyang Wang, Xufeng Zhou, Ke Yao, Jiangang Zhang, Zhaoping Liu
  175. [53] Hailiang Wang, Li-Feng Cui, Yuan Yang, Hernan Sanchez Casalongue, Joshua Tucker Robinson, Yongye Liang, Yi Cui, and Hongjie Dai
  176. Wiley (2005)
  177. VCH, (1989)
  178. [56] Yang Wang, Lu Wang, Tian Tian, Xiaoya Hu, Chun Yang and Qin Xu
  179. Analyst (2012), 137, 2400-2405
  180. [59] Fangyi Cheng, Jing Liang, Zhanliang Tao, and Jun Chen
  181. [60] Yong-Mao Lin, Paul R. Abel, Adam Heller, and C. Buddie Mullins
  182. 〈【航太科技】機會號行駛里程已超越NASA地球以外記錄〉
  183. 科技新報,航太科技版。
  184. [62] 林素琴 (2002, 07)。
  185. 〈大好前景-鋰電池材料發展分析〉。
  186. 工研院電子報,9810。