Translated Titles

Investigation of Fabrication and Chromaticity Characteristics of Solution-Processed Organic Light Emitting Diodes



Key Words

有機發光二極體 ; 濕式製程 ; 色度 ; Organic Light Emitting Diodes ; Solution Process ; Chromaticity



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本篇論文研究濕式製程有機發光二極體的色度、元件結構與效率表現之關係,透過色彩模擬、元件結構優化以及新穎製程實現高效率單色光與白光有機發光二極體元件。 首先,在本篇論文序論的部分,先對有機電致發光二極體的發展歷史做回顧並簡述有機發光二極體於顯示器與固態照明的應用,接下來對其發光原理、量測技術、製程方式以及白光有機發光二極體作有系統的介紹。 論文的第二部分,我們導入頻譜線性疊加的概念,模擬多元白光頻譜並於Commission International de l’Eclairage (CIE)色座標中對黑體輻射曲線作逼近,設計出高color rendering index (CRI)與高色度之白光頻譜。利用上述模擬頻譜調整客體發光材料間的摻雜比例於單一發光層中,以刮刀製程製作雙元、三元與四元單發光層濕式製程白光元件並驗證數值模擬的結果。其中,雙元高色溫白光元件,發光色溫為5700 K,CRI值為59,而四元暖白光元件,放光色溫為2700 K,CRI高達85,並具備高白光色純度(Du’v’ = +0.0009)。此外透過線性疊加模擬結果,優化出PL頻譜波峰為555 nm的Os基團的黃光磷光材料之最佳元件表現,所製作出之三元白光刮刀元件,其CRI可達84,色溫為2845 K。 論文第三部分,我們摻雜電洞傳輸材料4,4′-Cyclohexylidenebis[N,N-bis- (4-methylphenyl)benzenamine] (TAPC)與電子傳輸材料或雙極性傳導特性材料作為共主體材料,並以最佳條件製作四元共摻雜白光有機發光二極體元件。此外,我們分別透過兩種方式增加元件效率,第一在元件外部添加具微米透鏡之光學膜層以及透明半球之光學構造增加外部出光量,分別使元件之外部量子效率(external quantum efficiency, EQE)提升1.3倍與1.89倍;第二,我們於元件內部優化膜層厚度與調變電洞注入層致使白光元件在沒有外部增益層的情況下,效率達44.6 cd/A、35.6 lm/W、EQE = 21.9%。

English Abstract

In this thesis, we focus on chromaticity modeling, device optimization and innovative fabrication process of solution-processed organic light emitting diodes (OLEDs). First, in the introduction, we briefly review the history and development of organic electroluminescence devices, and the application of OLEDs in displays and solid state lighting. Operating princioples, measurement method, and device fabrication of OLEDs, and in particular, white light emitting devices are also discussed. In the second part of the thesis, chromaticity simulation of white OLEDs by superposition of individual illuminators is introduced. Design rules of approaching Planckian locus in Commission International de l’Eclairage (CIE) coordinates diagram are porposed. A series of high color rendering index (CRI) and high chromaticity white OLED spectrum have been calculated. By adjusting the emitters doping concentrations in single emissive layer, binary, ternary, and quaternary dopants blade-coated white OLEDs were fabricated to verify the numerical models. The binary white OLED exhibited high correlated color temperature (CCT) of 5700 K with CRI value of 59, while the quaternary white OLED exhibited a higher CRI value of 85 and a warm white illumiation of CCT = 2700 K. Furthermore, according to the model, the devices with a novel Os(II)-based emitter (emission λmax = 555 nm) were designed and fabricated. The ternary white OLED utilizing this novel Os(II) emitter delivered a high CRI value of 84 at CCT = 2845 K and small deviation to Plancknain locus (Du’v’ = +0.0009). In the third part, co-host system for solution processed emissive layer has been investigated. High hole-mobility material 4,4′-Cyclohexylidenebis[N,N-bis(4- methylphenyl)benzenamine] (TAPC) was blended with either electron transporting materals or bi-polar hosts. By tuning the ratio of hosts and optimizing the device strcture, highly efficient solution-processed co-host white OLEDs devices were fabricated. Furthermore, we separately explored two different methods to increase the external quantum efficiency (EQE) of the white OLEDs. Exteriorly, by utilizing micro-lens film and hemisphere structure, the light out-coupling efficiencies were enhanced by 1.3 times and 1.89 times, respetively. Interiorly, by fine-tuning the thickness of the emissive layer and carefully selecting the hole injection materials, a highly efficient solution-processed white OLED with current efficiency (CE) of 44.6 cd/A, power efficacy (PE) of 35.6 lm/W, and EQE up to 22.9 % was obtained without out-coupling enhancement structures. In the fourth part, we have analyzed the optoelectronic properties of crosslinkable hole transporting materials. Monochromatic multiple-layer solution-processed OLEDs were fabricated. The green OLED exhibited CE of 56.8 cd/A, PE as high as 54.6 lm/W, and EQE up to 15.9 %. In the last part of the thesis, we present the preliminary results of quantum dot light emitting diodes utilizing organic transporting layers and zinc oxide nanoparticles.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
  1. 6. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. J. Chem. Phys 1963, 38 (8), 2042.
  2. 7. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 1982, 94 (2), 171.
  3. 8. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51 (12), 913.
  4. 9. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Appl. Phys. Lett. 1989, 65 (9), 3610.
  5. 14. Ohno, Y., Standardization Activities for Solid State Lighting in the USA. Light and Lighting 2009, 34, 6.
  6. 17. Youn, H.; Jeon, K.; Shin, S.; Yang, M., All-solution blade–slit coated polymer light-emitting diodes. Org. Electron. 2012, 13 (8), 1470.
  7. 19. (a) Gather, M. C.; Kohnen, A.; Meerholz, K., White organic light-emitting diodes. Adv. Mater. 2011, 23 (2), 233; (b) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K., White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes
  8. 22. (a) Lee, T.-W.; Noh, T.; Choi, B.-K.; Kim, M.-S.; Shin, D. W.; Kido, J., High-efficiency stacked white organic light-emitting diodes. Appl. Phys. Lett. 2008, 92 (4), 043301; (b) Chang, C.-C.; Chen, J.-F.; Hwang, S.-W.; Chen, C. H., Highly efficient white organic electroluminescent devices based on tandem architecture. Appl. Phys. Lett. 2005, 87 (25), 253501; (c) Kim, H.-K.; Kim, D. G.; Lee, K. S.; Huh, M. S.; Jeong, S. H.; Kim, K. I.; Seong, T.-Y., Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes. Appl. Phys. Lett. 2005, 86 (18), 183503; (d) Kanno, H.; Holmes, R. J.; Sun, Y.; Kena-Cohen, S.; Forrest, S. R., White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer. Adv. Mater. 2006, 18 (3), 339; (e) Park, J. S.; Lee, B. R.; Lee, J. M.; Kim, J.-S.; Kim, S. O.; Song, M. H., Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides. Appl. Phys. Lett. 2010, 96 (24), 243306.
  9. 23. Gather, M. C.; Köhnen, A.; Falcou, A.; Becker, H.; Meerholz, K., Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography. Adv. Funct. Mater. 2007, 17 (2), 191.
  10. 24. Zhou, G.; Wong, W.-Y.; Suo, S., Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). J. Photochem. Photobiol. C. 2010, 11 (4), 133.
  11. 26. Kawamura, Y.; Yanagida, S.; Forrest, S. R., Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. J. Appl. Phys. 2002, 92 (1), 87.
  12. 27. (a) Yang, X.; Müller, D. C.; Neher, D.; Meerholz, K., Highly Efficient Polymeric Electrophosphorescent Diodes. Adv. Mater. 2006, 18 (7), 948-954; (b) Wu, H. B.; Zou, J. H.; Liu, F.; Wang, L.; Mikhailovsky, A.; Bazan, G. C.; Yang, W.; Cao, Y., Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes. Adv. Mater. 2008, 20 (4), 696; (c) Nakamura, A.; Tada, T.; Mizukami, M.; Yagyu, S., Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode. Appl. Phys. Lett. 2004, 84 (1), 130.
  13. 29. Chopra, N.; Lee, J.; Zheng, Y.; Eom, S.-H.; Xue, J.; So, F., High efficiency blue phosphorescent organic light-emitting device. Appl. Phys. Lett. 2008, 93 (14), 143307.
  14. 30. (a) Koo, W. H.; Youn, W.; Zhu, P.; Li, X.-H.; Tansu, N.; So, F., Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array. Adv. Funct. Mater. 2012, 22 (16), 3454; (b) Kim, J. B.; Lee, J. H.; Moon, C. K.; Kim, S. Y.; Kim, J. J., Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. Adv. Mater. 2013, 25 (26), 3571.
  15. 31. Zhang, Y.; Huang, F.; Jen, A. K. Y.; Chi, Y., High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. Appl. Phys. Lett. 2008, 92 (6), 063303.
  16. 36. Li, C.-Y.; Wen, T.-C.; Guo, T.-F., Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells. J. Mater. Chem. 2008, 18 (37), 4478.
  17. 37. (a) Strohriegl, P.; Grazulevicius, J. V., Charge-Transporting Molecular Glasses. Adv. Mater. 2002, 14 (20), 1439; (b) Fukaya, C.; Nakayama, Y.; Murayama, Y.; Omata, S.; Ishikawa, A.; Hosaka, Y.; Nakagawa, T., Improvement of hydrogelation abilities and handling of photocurable gelatin-based crosslinking materials. J. Biomed Mater. Res. B Appl. Biomater. 2009, 91 (1), 329.
  18. 38. Bellmann, E.; Shaheen, S. E.; Thayumanavan, S.; Barlow, S.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N., New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes:  Effect of Polymer Structure and Cross-Linking on Device Characteristics. Chem. Mat. 1998, 10 (6), 1668.
  19. 39. Braig, T.; Müller, D. C.; Groß, M.; Meerholz, K.; Nuyken, O., Crosslinkable hole-transporting polymers by palladium-catalyzed C—N-coupling reaction. Macromol. Rapid Commun. 2000, 21 (9), 583.
  20. 40. Domercq, B.; Hreha, R. D.; Zhang, Y.-D.; Haldi, A.; Barlow, S.; Marder, S. R.; Kippelen, B., Organic light-emitting diodes with multiple photocrosslinkable hole-transport layers. J. Polym. Sci. Part B Polym. Phys. 2003, 41 (21), 2726.
  21. 41. Zacharias, P.; Gather, M. C.; Rojahn, M.; Nuyken, O.; Meerholz, K., New crosslinkable hole conductors for blue-phosphorescent organic light-emitting diodes. Angew. Chem. 2007, 46 (23), 4388.
  22. 42. Shin, J.; Um, H. A.; Cho, M. J.; Lee, T. W.; Kim, K. H.; Jin, J.-I.; Kang, S.; Park, T.; Joo, S. H.; Yang, J. H.; Choi, D. H., Cascade hole transport in efficient green phosphorescent light-emitting devices achieved by layer-by-layer solution deposition using photocrosslinkable-conjugated polymers containing oxetane side-chain moieties. J. Polym. Sci. A Polym. Chem. 2012, 50 (2), 388.
  23. 43. Liaptsis, G.; Meerholz, K., Crosslinkable TAPC-Based Hole-Transport Materials for Solution-Processed Organic Light-Emitting Diodes with Reduced Efficiency Roll-Off. Adv. Funct. Mater. 2013, 23 (3), 359.
  24. 45. Lin, C.-Y.; Lin, Y.-C.; Hung, W.-Y.; Wong, K.-T.; Kwong, R. C.; Xia, S. C.; Chen, Y.-H.; Wu, C.-I., A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability. J. Mater. Chem. 2009, 19 (22), 3618.
  25. 46. Ma, B.; Kim, B. J.; Poulsen, D. A.; Pastine, S. J.; Fréchet, J. M. J., Multifunctional Crosslinkable Iridium Complexes as Hole Transporting/Electron Blocking and Emitting Materials for Solution-Processed Multilayer Organic Light-Emitting Diodes. Adv. Funct. Mater. 2009, 19 (7), 1024.
  26. 47. Hung, W.-Y.; Lin, C.-Y.; Cheng, T.-L.; Yang, S.-W.; Chaskar, A.; Fan, G.-L.; Wong, K.-T.; Chao, T.-C.; Tseng, M.-R., A new thermally crosslinkable hole injection material for OLEDs. Org. Electron. 2012, 13 (11), 2508.
  27. 48. Zuniga, C. A.; Abdallah, J.; Haske, W.; Zhang, Y.; Coropceanu, I.; Barlow, S.; Kippelen, B.; Marder, S. R., Crosslinking using rapid thermal processing for the fabrication of efficient solution-processed phosphorescent organic light-emitting diodes. Adv. Mater. 2013, 25 (12), 1739.
  28. 50. Loudon, J. C.; Mathur, N. D.; Midgley, P. A., Charge-ordered ferromagnetic phase in La(0.5)Ca(0.5)MnO3. Nature 2002, 420 (6917), 797.
  29. 51. Caruge, J.-M.; Halpert, J. E.; Bulovic, V.; Bawendi, M. G., NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices. Nano lett. 2006, 6 (12), 2991.
  30. 52. Polina O. Anikeeva, J. E. H., Moungi G. Bawendi, and Vladimir Bulovic´, Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Lett. 2009, 9 (7), 2532.
  31. 53. Qian, L.; Zheng, Y.; Choudhury, K. R.; Bera, D.; So, F.; Xue, J.; Holloway, P. H., Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 2010, 5 (5), 384.
  32. 54. Qian, L.; Zheng, Y.; Xue, J.; Holloway, P. H., Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photon. 2011, 5, 543.
  33. 55. Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon do, Y.; Char, K.; Lee, S.; Lee, C., Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12 (5), 2362.
  34. 1. http://oled.lcdtvbuyingguide.com/oled-tv-articles/sony-ces-2011.html. CES 2011, (LCDTVBuyingGuideTM).
  35. 2. (a) http://www.whathifi.com/news/ifa-2012-samsung-55in-oled-tv-marks-a-new- era-in-tv. IFA 2012, (WHAT HI-Fi); (b) http://www.samsungces.com/ keynote.aspx. CES 2013, (Samsung).
  36. 3. http://www.lg.com/uk/tvs/lg-55EM960V-oled-tv. 2013, (LG).
  37. 4. https://www1.eere.energy.gov/buildings/ssl/highlights_ge.html. U.S. Department of ENERGY 2003, (GE).
  38. 5. (a) http://www.oled-info.com/qube-oled-installation-over-1400-osram-orbeos- panels. OLED-Info.com 2011, (OSRAM); (b) http://www.archiproducts.com/en /products/29080/cluster-stainless-steel-wall-lamp-cluster-wall-benwirth-licht.html. archiproducts 2012, (Benwirth Licht); (c) http://www.oled-info.com/ lumiotec-p06-oled-lighting-panels. OLED-Info.com 2013, (Lumiotec).
  39. 10. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539.
  40. 11. (a) Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D. L.; Thompson, M. E., Cyclometalated Ir complexes in polymer organic light-emitting devices. J. Appl. Phys. 2002, 92 (3), 1570; (b) Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby, C. E.; Kohler, A.; Friend, R. H.; Holmes, A. B., Solution-processible conjugated electrophosphorescent polymers. J. Amer. Chem. Soc. 2004, 126 (22), 7041.
  41. 12. (a) Rea, M. S.; Freyssinier-Nova, J. P., Color rendering: A tale of two metrics. Color Res. Appl. 2008, 33 (3), 192; (b) Hashimoto, K.; Yano, T.; Shimizu, M.; Nayatani, Y., New method for specifying color-rendering properties of light sources based on feeling of contrast. Color Res. Appl. 2007, 32 (5), 361; (c) Rea, M. S.; Freyssinier, J. P., Color rendering: Beyond pride and prejudice. COLOR RES APPL. 2010, 35 (6), 401; (d) Freyssinier, J. P.; Rea, M., A two-metric proposal to specify the color-rendering properties of light sources for retail lighting. 2010, 77840V-77840V; (e) Thornton, W. A., Color-Discrimination Index. J. Opt. Soc. Am. 1972, 62 (2), 191; (f) Smet, K.; Ryckaert, W. R.; Pointer, M. R.; Deconinck, G.; Hanselaer, P., Correlation between color quality metric predictions and visual appreciation of light sources. Opt. Express. 2011, 19 (9), 8151.
  42. 13. Jackson, A.; Bradley, D. S.; Roy, R. N.; Clark, M., Specifications for the Chromaticity of Solid State Lighting Products. ANSI. 2011, C78 (377), 21.
  43. 15. (a) Wang, R.; Liu, D.; Zhang, R.; Deng, L.; Li, J., Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes. J. Mater. Chem. 2012, 22 (4), 1411; (b) Kim, S.-J.; Zhang, Y.; Zuniga, C.; Barlow, S.; Marder, S. R.; Kippelen, B., Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Org. Electron. 2011, 12 (3), 492; (c) Lee, C. W.; Lee, J. Y., High quantum efficiency in solution and vacuum processed blue phosphorescent organic light emitting diodes using a novel benzofuropyridine-based bipolar host material. Adv. Mater. 2013, 25 (4), 596; (d) Kim, K. H.; Lee, J. Y.; Park, T. J.; Jeon, W. S.; Kennedy, G. P.; Kwon, J. H., Small molecule host system for solution-processed red phosphorescent OLEDs. Synth. Met. 2010, 160 (7-8), 631.
  44. 16. (a) Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano. 2010, 4 (5), 2955; (b) Krantz, J.; Richter, M.; Spallek, S.; Spiecker, E.; Brabec, C. J., Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells. Adv. Funct. Mater. 2011, 21 (24), 4784; (c) You, J.-D.; Tseng, S.-R.; Meng, H.-F.; Yen, F.-W.; Lin, I. F.; Horng, S.-F., All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Org. Electron. 2009, 10 (8), 1610; (d) Ko, L.-C.; Liu, T.-Y.; Chen, C.-Y.; Yeh, C.-L.; Tseng, S.-R.; Chao, Y.-C.; Meng, H.-F.; Lo, S.-C.; Burn, P. L.; Horng, S.-F., Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Org. Electron. 2010, 11 (6), 1005; (e) Yeh, H.-C.; Meng, H.-F.; Lin, H.-W.; Chao, T.-C.; Tseng, M.-R.; Zan, H.-W., All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Org. Electron. 2012, 13 (5), 914; (f) Lin, H.-Y.; Huang, W.-C.; Chen, Y.-C.; Chou, H.-H.; Hsu, C.-Y.; Lin, J. T.; Lin, H.-W., BODIPY dyes with [small beta]-conjugation and their applications for high-efficiency inverted small molecule solar cells. Chem. Commun. 2012, 48 (71), 8913-8915; (g) Chang, J.-H.; Chen, Y.-H.; Lin, H.-W.; Lin, Y.-T.; Meng, H.-F.; Chen, E.-C., Highly efficient inverted rapid-drying blade-coated organic solar cells. Org. Electron. 2012, 13 (4), 705-709; (h) Chang, Y.-F.; Chiu, Y.-C.; Yeh, H.-C.; Chang, H.-W.; Chen, C.-Y.; Meng, H.-F.; Lin, H.-W.; Huang, H.-L.; Chao, T.-C.; Tseng, M.-R.; Zan, H.-W.; Horng, S.-F., Unmodified small-molecule organic light-emitting diodes by blade coating. Org. Electron. 2012, 13 (10), 2149.
  45. 18. (a) Chang, S.-C.; Liu, J.; Bharathan, J.; Yang, Y.; Onohara, J.; Kido, J., Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing. Adv. Mater. 1999, 11 (9), 734; (b) Villani, F.; Vacca, P.; Miscioscia, R.; Nenna, G.; Burrasca, G.; Fasolino, T.; Minarini, C.; Sala, D. d., OLED with Hole-Transporting Layer Fabricated by Ink-Jet Printing. Macromol. Symp. 2009, 286 (1), 101; (c) Braga, D.; Erickson, N. C.; Renn, M. J.; Holmes, R. J.; Frisbie, C. D., High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices. Adv. Funct. Mater. 2012, 22 (8), 1623; (d) McGraw, G. J.; Forrest, S. R., Vapor-phase microprinting of multicolor phosphorescent organic light emitting device arrays. Adv. Mater. 2013, 25 (11), ; (e) Teichler, A.; Shu, Z.; Wild, A.; Bader, C.; Nowotny, J.; Kirchner, G.; Harkema, S.; Perelaer, J.; Schubert, U. S., Inkjet printing of chemically tailored light-emitting polymers. Eur. Polym. J. 2013, 49 (8), 2186; (g) Ely, F.; Avellaneda, C. O.; Paredez, P.; Nogueira, V. C.; Santos, T. E. A.; Mammana, V. P.; Molina, C.; Brug, J.; Gibson, G.; Zhao, L., Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties. Synth. Met. 2011, 161 (19-20), 2129.
  46. Appl. Phys. Lett. 1994, 64 (7), 815; (c) D'Andrade, B. W.; Holmes, R. J.; Forrest, S. R., Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer. Adv. Mater. 2004, 16 (7), 624; (d) Zhang, B.; Tan, G.; Lam, C. S.; Yao, B.; Ho, C. L.; Liu, L.; Xie, Z.; Wong, W. Y.; Ding, J.; Wang, L., High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex. Adv. Mater. 2012, 24 (14), 1873; (e) Al Attar, H. A.; Monkman, A. P.; Tavasli, M.; Bettington, S.; Bryce, M. R., White polymeric light-emitting diode based on a fluorene polymer∕Ir complex blend system. Appl. Phys. Lett. 2005, 86 (12), 121101.
  47. 20. (a) Yu, J.; Lin, H.; Wang, F.; Lin, Y.; Zhang, J.; Zhang, H.; Wang, Z.; Wei, B., Sunlight-like, color-temperature tunable white organic light-emitting diode with high color rendering index for solid-state lighting application. J. Mater. Chem. 2012, 22 (41), 22097; (b) Sun, Y.; Forrest, S. R., High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl. Phys. Lett. 2007, 91 (26), 263503; (c) Chang, Y.-L.; Song, Y.; Wang, Z.; Helander, M. G.; Qiu, J.; Chai, L.; Liu, Z.; Scholes, G. D.; Lu, Z., Highly Efficient Warm White Organic Light-Emitting Diodes by Triplet Exciton Conversion. Adv. Funct. Mater. 2013, 23 (6), 705; (d) Cheng, G.; Zhang, Y.; Zhao, Y.; Lin, Y.; Ruan, C.; Liu, S.; Fei, T.; Ma, Y.; Cheng, Y., White organic light-emitting devices with a phosphorescent multiple emissive layer. Appl. Phys. Lett. 2006, 89 (4), 043504.
  48. 21. (a) Kido, J.; Kimura, M.; Nagai, K., Multilayer White Light-Emitting Organic Electroluminescent Device. Science 1995, 267 (5202), 1332; (b) Juang, F.-S.; Hong, L.-A.; Wang, S.-H.; Tsai, Y.-S.; Gao, M.-H.; Chi, Y.; Shieh, H.-P.; Hsu, J.-S., Power Efficiency Improvement of White Phosphorescent Organic Light-Emitting Diode with Thin Double-Emitting Layers and Hole-Trapping Mechanism. Jpn. J. Appl. Phys. 2011, 50 (4), 04DK04; (c) Sasabe, H.; Takamatsu, J.; Motoyama, T.; Watanabe, S.; Wagenblast, G.; Langer, N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv. Mater. 2010, 22 (44), 5003; (d) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K., White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459 (7244), 234.
  49. 25. (a) Du, B.-S.; Liao, J.-L.; Huang, M.-H.; Lin, C.-H.; Lin, H.-W.; Chi, Y.; Pan, H.-A.; Fan, G.-L.; Wong, K.-T.; Lee, G.-H.; Chou, P.-T., Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. Adv. Funct. Mater. 2012, 22 (16), 3491; (b) Huang, S.-Y.; Meng, H.-F.; Huang, H.-L.; Chao, T.-C.; Tseng, M.-R.; Chao, Y.-C.; Horng, S.-F., Uniform dispersion of triplet emitters in multi-layer solution-processed organic light-emitting diodes. Synth. Met. 2010, 160 (23-24), 2393; (c) Lee, D.-H.; Liu, Y.-P.; Lee, K.-H.; Chae, H.; Cho, S. M., Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Org. Electron. 2010, 11 (3), 427.
  50. 28. (a) Borsenberger, P. M.; Magin, E. H.; Fitzgerald, J. J., Concentration dependence of the hole mobility of 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) doped polystyrene (PS). J. Phys. Chem. 1993, 97 (36), 9213; (b) Kim, T.-Y.; Moon, D.-G., Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host. TEEM. 2011, 12 (2), 84-87; (c) Chopra, N.; Swensen, J. S.; Polikarpov, E.; Cosimbescu, L.; So, F.; Padmaperuma, A. B., High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. Appl. Phys. Lett. 2010, 97 (3), 033304.
  51. 32. (a) Mróz, W.; Botta, C.; Giovanella, U.; Rossi, E.; Colombo, A.; Dragonetti, C.; Roberto, D.; Ugo, R.; Valore, A.; Williams, J. A. G., Cyclometallated platinum(ii) complexes of 1,3-di(2-pyridyl)benzenes for solution-processable WOLEDs exploiting monomer and excimer phosphorescence. J. Mater. Chem. 2011, 21 (24), 8653; (b) Ye, T.; Shao, S.; Chen, J.; Wang, L.; Ma, D., Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer. ACS Appl. Mater. Interfaces. 2011, 3 (2), 410.
  52. 33. (a) Cai, M.; Xiao, T.; Hellerich, E.; Chen, Y.; Shinar, R.; Shinar, J., High-efficiency solution-processed small molecule electrophosphorescent organic light-emitting diodes. Adv. Mater. 2011, 23 (31), 3590; (b) Doh, Y. J.; Park, J. S.; Jeon, W. S.; Pode, R.; Kwon, J. H., Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems. Org. Electron. 2012, 13 (4), 586; (c) Fu, Q.; Chen, J.; Shi, C.; Ma, D., Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces. 2012, 4 (12), 6579.
  53. 34. (a) Lin, H.-P.; Zhou, F.; Li, J.; Zhang, X.-W.; Yu, D.-B.; Zhang, L.; Jiang, X.-Y.; Zhang, Z.-L., A high performance of BPhen-based white organic light-emitting devices with a dual-emitting layer and its electroluminescent spectral property. J. Ind. Eng. Chem. 2011, 17 (4), 675; (b) Wen, L.; Li, F.; Xie, J.; Wu, C.; Zheng, Y.; Chen, D.; Xu, S.; Guo, T.; Qu, B.; Chen, Z.; Gong, Q., Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes. JOL 2011, 131 (11), 2252; (c) Liu, C.; Liu, L.; Che, G.; Cui, Y.; Wang, Q.; Li, W.; Liu, M., High response organic ultraviolet photodetectors based on 4,7-diphenyl-1,10-phenanthroline. Sol. Energy Mater. Sol. Cells 2012, 96, 29; (d) Jankus, V.; Chiang, C. J.; Dias, F.; Monkman, A. P., Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? Adv. Mater. 2013, 25 (10), 1455; (e) Mauro, M.; Yang, C. H.; Shin, C. Y.; Panigati, M.; Chang, C. H.; D'Alfonso, G.; De Cola, L., Phosphorescent organic light-emitting diodes with outstanding external quantum efficiency using dinuclear rhenium complexes as dopants. Adv. Mater. 2012, 24 (15), 2054.
  54. 35. (a) Stakhira, P.; Khomyak, S.; Cherpak, V.; Volyniuk, D.; Simokaitiene, J.; Tomkeviciene, A.; Kukhta, N. A.; Grazulevicius, J. V.; Kukhta, A. V.; Sun, X. W.; Demir, H. V.; Hotra, Z.; Voznyak, L., Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synth. Met. 2012, 162 (3-4), 352; (b) Tsuboi, T.; Murayama, H.; Yeh, S.-J.; Wu, M.-F.; Chen, C.-T., Photoluminescence characteristics of blue phosphorescent Ir3+-compounds FIrpic and FIrN4 doped in mCP and SimCP. Opt. Mater. 2008, 31 (2), 366; (c) Adamovich, V.; Brooks, J.; Tamayo, A.; Alexander, A. M.; Djurovich, P. I.; D'Andrade, B. W.; Adachi, C.; Forrest, S. R.; Thompson, M. E., High efficiency single dopant white electrophosphorescent light emitting diodes. New J. Chem. 2002, 26 (9), 1171; (d) Hu, D.; Lu, P.; Wang, C.; Liu, H.; Wang, H.; Wang, Z.; Fei, T.; Gu, X.; Ma, Y., Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Chem. Mat. 2009, 19 (34), 6143.
  55. 44. (a) Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.; Huang, F.; Ka, J.-W.; Yip, H.-L.; Tian, Y.; Jen, A. K. Y., Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices. Chem. Mat. 2007, 20 (2), 413; (b) Niu, Y. H.; Liu, M. S.; Ka, J. W.; Bardeker, J.; Zin, M. T.; Schofield, R.; Chi, Y.; Jen, A. K. Y., Crosslinkable Hole-Transport Layer on Conducting Polymer for High-Efficiency White Polymer Light-Emitting Diodes. Adv. Mater. 2007, 19 (2), 300.
  56. 49. (a) Colnin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370 (4), 354 ; (b) Zhao, J.; Bardecker, J. A.; Munro, A. M.; Liu, M. S.; Niu, Y.; Ding, I.-K.; Luo, J.; Chen, B.; Jen, A. K.-Y.; Ginger, D. S., Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Lett. 2006, 6 (3), 463.
  57. 56. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; Kazlas, P. T., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature Photon. 2013, 7, 407.