Title

濕式製程整塊異質接面與蕭基接面有機小分子太陽能電池

Translated Titles

Solution-Processed Bulk Heterojunction and Schottky Junction Small Molecule Organic Solar Cells

Authors

黃韋清

Key Words

有機小分子太陽能電池 ; 濕式製程整塊異質接面

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

林皓武

Content Language

繁體中文

Chinese Abstract

本篇論文研究濕式製程整塊異質接面與蕭基接面有機小分子太陽能電池元件結構與特性。 第一章部分,簡介近代太陽能電池的發展,並且概述有機小分子太陽能電池的發展,接著再對有機高分子太陽能電池做一系列的回顧。 第二章部分,概述太陽能電池的元件特性與有機小分子太陽能電池的運作原理以及元件結構,接著介紹有機材料的準備與分析,以及元件的製作流程,最後為元件量測方法。 第三章部分,我們使用 donor-acceptor-acceptor (D-A-A) 分子結構型態的新型有機材料以及C70或PC71BM作為整塊異質接面元件中的donor與acceptor。使用旋轉塗佈法或是刮刀塗佈法製作主動層,並藉由調控比例改善元件的整塊異質接面結構。 第四章部分,我們使用A-A-D-A-A分子結構型態的有機BODIPY小分子材料以及PC71BM製作整塊異質接面反結構元件,在優化元件後,其最佳表現開路電壓為0.99 V,短路電流為8.3 mA/cm2,填充因子為0.40,效率達3.3%。 第五章部分,我們開發以小分子donor嫁接氧化石墨烯的donor材料,並搭配C70製作有機太陽能電池,其最佳表現開路電壓0.72 V,短路電流8.6 mA/cm2,填充因子0.43,效率2.7%,為目前以氧化石墨烯為主動層材料之太陽能電池中,轉換效率最高的元件。 第六章部分,我們利用刮刀塗佈法實現低donor濃度有機蕭基接面元件,並藉由濕式製程慣用的共溶劑手法,進一步提升元件效率,其最佳表現開路電壓0.86 V,短路電流12.6 mA/cm2,填充因子0.48,效率高達5.2%。

English Abstract

In this thesis, we focus on the fabrication and characterization of solution-processed bulk heterojunction and Schottky junction small molecule organic solar cells (SMOSCs). In the first chapter, we briefly review the development of modern photovoltaics, expecially the history of SMOSCs and polymer solar cells. In the second chapter, the operation principles and characteristics of organic solar cells are described, followed by the details of material analysis, device fabrication, and characteristics measurements. In the third part of the thesis, we have studied a series of tailor-made compounds with donor-acceptor-acceptor (D-A-A) molecular structures as donor materials for solution-processed SMOSCs. Spin-coated and blade-coated devices were fabricated and the performance of the devices were further improved by manipulating the donor:acceptor blend ratios. In the fourth chapter, a series of organic A-A-D-A-A compound as donor material has been studied. Solution-processed inverted bulk heterojunction cells were fabricated from the blends of the donors and PC71BM. The opitimized cells showed VOC of 0.99 V, JSC of 8.3 mA/cm2, FF of 0.40, and efficiency up to 3.3%. In the penultimate chapter, we demonstrate a series of small molecule-grafted graphenes as donor material for solution-processed SMOSCs. The opitimized cells showed VOC of 0.72 V, JSC of 8.6 mA/cm2, FF of 0.43, and efficiency as high as 2.7%. This efficiency is among the highest ever reported for organic solar cells based on graphene derivatives as solar active materials. In the last chapter, the solution-processed C70-based organic Schottky junction devices have been fabricated using blade-coating technique. We adopted the co-solvent method in our blade-coated organic Schottky junction devices and the opitimized cells which showed VOC of 0.86 V, JSC of 12.6 mA/cm2, FF of 0.48, and efficiency as high as 5.2% were demostrated.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. 1. J. Kruger, "Ecole Polytechnique Fédérale de Lausanne." Ph. D. Thesis, 2003.
    連結:
  2. 3. D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power." J. Appl. Phys., 1954, 25, 676.
    連結:
  3. 4. J. Zhao, A. Wang and M. A. Green, "24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates." Res. Appl., 1999, 7, 471.
    連結:
  4. 5. O. Schultz, W. Glunz S and G. P. Willeke, "Multicrystalline Silicon Solarcells exceeding 20% efficiency." Res. Appl., 2004, 12, 533.
    連結:
  5. 6. D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell." Appl. Phys. Lett., 1976, 28, 671.
    連結:
  6. 7. J. Yang, A. Banerjee and S. Guha, "Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies." Appl. Phys. Lett., 1997, 70, 2975.
    連結:
  7. 8. X. Wu, "High-efficiency polycrystalline CdTe thin-film solar cells." Sol Energy, 2004, 77, 803.
    連結:
  8. 11. W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells." J. Appl. Phys., 1961, 32, 510.
    連結:
  9. 12. J. Desilvestro, M. Graetzel, L. Kavan, J. Moser and J. Augustynski, "Highly efficient sensitization of titanium dioxide." J. Am. Chem. Soc., 1985, 107, 2988.
    連結:
  10. 13. R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, "Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22." J. Am. Chem. Soc., 1990, 112, 7099.
    連結:
  11. 14. M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, M. Grätzel, P. Liska, J. Moser, N. Vlachopoulos and M. Grätzel, "Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2 Films." Helv. Chim. Acta, 1990, 73, 1788.
    連結:
  12. 15. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, "Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes." J. Am. Chem. Soc., 1993, 115, 6382.
    連結:
  13. 16. M. K. Nazeeruddin, P. Péchy and M. Grätzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex." Chem. Commun., 1997, 1705.
    連結:
  14. 17. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Grätzel, "Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania." Inorg. Chem., 1999, 38, 6298.
    連結:
  15. 18. X. Liu, Y. Cheng, L. Wang, L. Cai and B. Liu, "Light controlled assembling of iodine-free dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) as a hole conductor reaching 7.1% efficiency." Phys. Chem. Chem. Phys., 2012.
    連結:
  16. 19. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, M. K. Nazeeruddin and M. Gratzel, "Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells." J. Am. Chem. Soc., 2011, 133, 18042.
    連結:
  17. 20. D. Kearns and M. Calvin, "Photovoltaic Effect and Photoconductivity in Laminated Organic Systems." J. Chem. Phys., 1958, 29, 950.
    連結:
  18. 21. C. W. Tang, "Two-layer organic photovoltaic cell." Appl. Phys. Lett., 1986, 48, 183.
    連結:
  19. 22. P. Peumans, V. Bulović and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes." Appl. Phys. Lett., 2000, 76, 2650.
    連結:
  20. 23. P. Peumans and S. R. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells." Appl. Phys. Lett., 2001, 79, 126.
    連結:
  21. 24. B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson and S. R. Forrest, "Organic photovoltaics incorporating electron conducting exciton blocking layers." Appl. Phys. Lett., 2011, 98, 243307.
    連結:
  22. 25. M. Hirade and C. Adachi, "Small molecular organic photovoltaic cells with exciton blocking layer at anode interface for improved device performance." Appl. Phys. Lett., 2011, 99, 153302.
    連結:
  23. 26. M. Hiramoto, M. Suezaki and M. Yokoyama, "Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell." Chem. Lett., 1990, 3, 327.
    連結:
  24. 27. M. Hiramoto, H. Fujiwara and M. Yokoyama, "p‐i‐n like behavior in three‐layered organic solar cells having a co‐deposited interlayer of pigments." J. Appl. Phys., 1992, 72, 3781.
    連結:
  25. 28. B. Walker, C. Kim and T.-Q. Nguyen, "Small Molecule Solution-Processed Bulk Heterojunction Solar Cells†." Chem. Mater., 2011, 23, 470.
    連結:
  26. 29. J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li and Y. Chen, "Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit." J. Am. Chem. Soc., 2013, 135, 8484.
    連結:
  27. 30. C. N. Hoth, S. A. Choulis, P. Schilinsky and C. J. Brabec, "High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends." Adv. Mater., 2007, 19, 3973.
    連結:
  28. 31. J.-H. Chang, Y.-H. Chen, H.-W. Lin, Y.-T. Lin, H.-F. Meng and E.-C. Chen, "Highly efficient inverted rapid-drying blade-coated organic solar cells." Org. Electron., 2012, 13, 705.
    連結:
  29. 33. M. Pudas, J. Hagberg and S. Leppävuori, "Gravure offset printing of polymer inks for conductors." Prog. Org. Coat., 2004, 49, 324.
    連結:
  30. 34. J. Tsukamoto, H. Ohigashi, K. Matsumura and A. Takahashi, "A Schottky Barrier Type Solar Cell Using Polyacetylene." Jpn. J. Appl. Phys., 1981, 20, L127.
    連結:
  31. 35. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene." Science, 1992, 258, 1474.
    連結:
  32. 36. J. J. M. Halls, K. Pichler and R. H. Friend, "Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell." Appl. Phys. Lett., 1996, 68, 3120.
    連結:
  33. 37. G. Yu, K. Pakbaz and A. J. Heeger, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity." Appl. Phys. Lett., 1994, 64, 3422.
    連結:
  34. 38. G. Yu, J. Gao, C. Hummelen, F. Wudi and A. J. Heeger, "Polymer photovoltaic cells enhanced efficiencies via a network of internal donor-acceptor heterojunctions." Science, 1995, 270, 1789.
    連結:
  35. 39. F. Padinger, R. S. Rittberger and N. S. Sariciftci, "Effects of Postproduction Treatment on Plastic Solar Cells." Adv. Funct. Mater., 2003, 13, 85.
    連結:
  36. 40. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends." Nat. Mater., 2005, 4, 864.
    連結:
  37. 41. W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology." Adv. Funct. Mater., 2005, 15, 1617.
    連結:
  38. 42. X. Li, W. C. Choy, L. Huo, F. Xie, W. E. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You and Y. Yang, "Dual plasmonic nanostructures for high performance inverted organic solar cells." Adv. Mater., 2012, 24, 3046.
    連結:
  39. 43. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T. H. Lai, J. R. Reynolds and F. So, "High-efficiency inverted dithienogermole– thienopyrrolodione-based polymer solar cells." Nat. Photonics, 2012, 6, 115.
    連結:
  40. 44. Z. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou and Y. Li, "High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode." Adv. Mater., 2012, 24, 1476.
    連結:
  41. 45. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and X. Gong, "Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte." Energy Environ. Sci., 2012, 5, 8208.
    連結:
  42. 46. J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li and Y. Yang, "Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells." Adv. Mater., 2012, 24, 5267.
    連結:
  43. 47. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, "Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure." Nat. Photonics, 2012, 6, 591.
    連結:
  44. 49. S. R. Forrest, "The path to ubiquitous and low-cost organic electronic." Nature, 2004, 428, 911.
    連結:
  45. 50. P. Peumans, A. Yakimov and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells." J. Appl. Phys., 2003, 93, 3693.
    連結:
  46. 51. C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci and P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells." Appl. Phys. Lett., 2002, 80, 1288.
    連結:
  47. 52. H. Frohne, S. E. Shaheen, C. J. Brabec, D. C. Muller, N. S. Sariciftci and K. Meerholz, "Influence of the Anodic Work Function on the Performance of Organic Solar Cells." ChemPhysChem, 2002, 3, 795.
    連結:
  48. 53. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, "Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer." Appl. Phys. Lett., 2006, 89, 143517.
    連結:
  49. 54. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, "An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO[sub 3] hole selective layer." Appl. Phys. Lett., 2008, 93, 221107.
    連結:
  50. 55. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, "Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency." Adv. Mater., 2006, 18, 789.
    連結:
  51. 56. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, "Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells." J. Appl. Phys., 2003, 94, 6849.
    連結:
  52. 57. S. Gunes, H. Neugebauer and N. S. Sariciftci, "Conjugated polymer-based organic solar cells." Chem. Rev., 2007, 107, 1324.
    連結:
  53. 58. V. Mihailetchi, J. Wildeman and P. Blom, "Space-Charge Limited Photocurrent." Phys. Rev. Lett., 2005, 94.
    連結:
  54. 59. M. M. Mandoc, W. Veurman, L. J. A. Koster, B. de Boer and P. W. M. Blom, "Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells." Adv. Funct. Mater., 2007, 17, 2167.
    連結:
  55. 60. S. R. Cowan, A. Roy and A. J. Heeger, "Recombination in polymer-fullerene bulk heterojunction solar cells." Phys. Rev. B, 2010, 82.
    連結:
  56. 61. R. Mauer, I. A. Howard and F. Laquai, "Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells." The Journal of Physical Chemistry Letters, 2010, 1, 3500.
    連結:
  57. 62. L. J. Koster, M. Kemerink, M. M. Wienk, K. Maturova and R. A. Janssen, "Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells." Adv. Mater., 2011, 23, 1670.
    連結:
  58. 63. A. M. Goodman and A. Rose, "Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts." J. Appl. Phys., 1971, 42, 2823.
    連結:
  59. 64. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker and P. W. M. Blom, "Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells." Appl. Phys. Lett., 2005, 86, 123509.
    連結:
  60. 65. S. R. Cowan, W. L. Leong, N. Banerji, G. Dennler and A. J. Heeger, "Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First-Order Recombination Via Well-Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells." Adv. Funct. Mater., 2011, 21, 3083.
    連結:
  61. 66. C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson and J. R. Durrant, "Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices." Proc. Natl. Acad. Sci. USA, 2010, 107, 16448.
    連結:
  62. 67. A. K. Ghosh and T. Feng, "Merocyanine organic solar cells." J. Appl. Phys., 1978, 49, 5982.
    連結:
  63. 68. J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, "A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell." Adv. Mater., 2005, 17, 66.
    連結:
  64. 69. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, "Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer." Adv. Mater., 2011, 23, 1679.
    連結:
  65. 70. A. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan and A. J. Heeger, "Efficient solution-processed small-molecule solar cells with inverted structure." Adv. Mater., 2013, 25, 2397.
    連結:
  66. 71. H.-G. Jeon, M. Inoue, N. Hiramatsu, M. Ichikawa and Y. Taniguchi, "A modified sublimation purification system using arrays of partitions." Org. Electron., 2008, 9, 903.
    連結:
  67. 72. H.-G. Jeon, Y. Kondo, S. Maki, E. Matsumoto, Y. Taniguchi and M. Ichikawa, "A highly efficient sublimation purification system using baffles with orifices." Org. Electron., 2010, 11, 794.
    連結:
  68. 73. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery and Y. Yang, "Accurate Measurement and Characterization of Organic Solar Cells." Adv. Funct. Mater., 2006, 16, 2016.
    連結:
  69. 74. S. B. Darling, F. You, T. Veselka and A. Velosa, "Assumptions and the levelized cost of energy for photovoltaics." Energy Environ. Sci., 2011, 4, 3133.
    連結:
  70. 75. H.-L. Yip and A. K. Y. Jen, "Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells." Energy Environ. Sci., 2012, 5, 5994.
    連結:
  71. 76. D. Yue, P. Khatav, F. You and S. B. Darling, "Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics." Energy Environ. Sci., 2012, 5, 9163.
    連結:
  72. 77. H. J. Son, B. Carsten, I. H. Jung and L. Yu, "Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers." Energy Environ. Sci., 2012, 5, 8158.
    連結:
  73. 78. H. J. Son, F. He, B. Carsten and L. Yu, "Are we there yet? Design of better conjugated polymers for polymer solar cells." J. Mater. Chem., 2011, 21, 18934.
    連結:
  74. 79. M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su and K. H. Wei, "Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives." Adv. Mater., 2011, 23, 3315.
    連結:
  75. 80. C. Duan, F. Huang and Y. Cao, "Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures." J. Mater. Chem., 2012, 22, 10416.
    連結:
  76. 81. T. Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao, "Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%." J. Am. Chem. Soc., 2011, 133, 4250.
    連結:
  77. 82. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, "Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells." Adv. Mater., 2011, 23, 4636.
    連結:
  78. 83. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, "Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency." Angew. Chem., Int. Ed., 2011, 50, 2995.
    連結:
  79. 84. J. M. Szarko, J. Guo, Y. Liang, B. Lee, B. S. Rolczynski, J. Strzalka, T. Xu, S. Loser, T. J. Marks, L. Yu and L. X. Chen, "When function follows form: Effects of donor copolymer side chains on film morphology and BHJ solar cell performance." Adv. Mater., 2010, 22, 5468.
    連結:
  80. 85. B. Walker, J. Liu, C. Kim, G. C. Welch, J. K. Park, J. Lin, P. Zalar, C. M. Proctor, J. H. Seo, G. C. Bazan and T.-Q. Nguyen, "Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells." Energy Environ. Sci., 2013, 6, 952.
    連結:
  81. 86. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. a. J. Heeger, "Solution-processed small-molecule solar cells with 6.7% efficiency." Nat. Mater., 2012, 11, 44.
    連結:
  82. 87. T. S. van der Poll, J. A. Love, T. Q. Nguyen and G. C. Bazan, "Non-basic high-performance molecules for solution-processed organic solar cells." Adv. Mater., 2012, 24, 3646.
    連結:
  83. 88. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su and Y. Chen, "Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells." J. Am. Chem. Soc., 2012, 134, 16345.
    連結:
  84. 89. L. Y. Lin, Y. H. Chen, Z. Y. Huang, H. W. Lin, S. H. Chou, F. Lin, C. W. Chen, Y. H. Liu and K. T. Wong, "A low-energy-gap organic dye for high-performance small-molecule organic solar cells." J. Am. Chem. Soc., 2011, 133, 15822.
    連結:
  85. 90. Y. H. Chen, L. Y. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. Wen, D. J. Miller and S. B. Darling, "Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization." J. Am. Chem. Soc., 2012, 134, 13616.
    連結:
  86. 91. Y.-T. Lin, "Soloution-Processed Organic Bulk Heterojunction Solar Cells." master's degree, National Tsing Hua University, 2011.
    連結:
  87. 92. A. Loiudice, A. Rizzo, G. Latini, C. Nobile, M. de Giorgi and G. Gigli, "Graded vertical phase separation of donor/acceptor species for polymer solar cells." Sol. Energy Mater. Sol. Cells, 2012, 100, 147.
    連結:
  88. 93. Y. C. Huang, G. C. Welch, G. C. Bazan, M. L. Chabinyc and W. F. Su, "Self-vertical phase separation study of nanoparticle/polymer solar cells by introducing fluorinated small molecules." Chem. Commun., 2012, 48, 7250.
    連結:
  89. 94. Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu and Y. Yang, "Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells." Adv. Funct. Mater., 2009, 19, 1227.
    連結:
  90. 95. J.-Y. Li, C.-Y. Chen, C.-P. Lee, S.-C. Chen, T.-H. Lin, H.-H. Tsai, K.-C. Ho and C.-G. Wu, "Unsymmetrical Squaraines Incorporating the Thiophene Unit for Panchromatic Dye-Sensitized Solar Cells." Org. Lett., 2010, 12, 5454.
    連結:
  91. 96. T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel and J. Roncali, "Multi-donor molecular bulk heterojunction solar cells: improving conversion efficiency by synergistic dye combinations." J. Mater. Chem., 2009, 19, 2298.
    連結:
  92. 97. T. Rousseau, A. Cravino, E. Ripaud, P. Leriche, S. Rihn, A. De Nicola, R. Ziessel and J. Roncali, "A tailored hybrid BODIPY-oligothiophene donor for molecular bulk heterojunction solar cells with improved performances." Chem. Commun., 2010, 46, 5082.
    連結:
  93. 98. T. Bura, N. Leclerc, S. Fall, P. Leveque, T. Heiser, P. Retailleau, S. Rihn, A. Mirloup and R. Ziessel, "High-performance solution-processed solar cells and ambipolar behavior in organic field-effect transistors with thienyl-BODIPY scaffoldings." J. Am. Chem. Soc., 2012, 134, 17404.
    連結:
  94. 99. A. Loudet and K. Burgess, "BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties." Chem. Rev, 2007, 107, 4891.
    連結:
  95. 100. R. Ziessel, G. Ulrich and A. Harriman, "The chemistry of Bodipy: A new El Dorado for fluorescence tools." New J. Chem., 2007, 31, 496.
    連結:
  96. 101. J. Roncali, "Molecular Bulk Heterojunctions: An Emerging Approach to Organic Solar Cells." Acc. Chem. Res., 2009, 42, 1719.
    連結:
  97. 102. D. W. Sievers, V. Shrotriya and Y. Yang, "Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells." J. Appl. Phys., 2006, 100, 114509.
    連結:
  98. 103. W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D. J. Miller, J. Chen, K. Hong, L. Yu and S. B. Darling, "Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells." Nano Lett., 2011, 11, 3707.
    連結:
  99. 104. L. A. A. Pettersson, L. S. Roman and O. Inganäs, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films." J. Appl. Phys., 1999, 86, 487.
    連結:
  100. 105. Y. Zhang, X.-D. Dang, C. Kim and T.-Q. Nguyen, "Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells." Adv. Energy Mater., 2011, 1, 610.
    連結:
  101. 106. H. Y. Lin, W. C. Huang, Y. C. Chen, H. H. Chou, C. Y. Hsu, J. T. Lin and H. W. Lin, "BODIPY dyes with beta-conjugation and their applications for high-efficiency inverted small molecule solar cells." Chem. Commun., 2012, 48, 8913.
    連結:
  102. 107. D. Yu, Y. Yan, M. Durstock, J. B. Baek and L. Dai, "Soluble P3HT-Grafted Graphene for Efficient Bilayer−Heterojunction Photovoltaic Devices." ACS Nano, 2010, 10, 5633.
    連結:
  103. 108. D. Yu, K. Park, M. Durstock and L. Dai, "Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices." The Journal of Physical Chemistry Letters, 2011, 2, 1113.
    連結:
  104. 109. J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock and L. Dai, "Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells." Adv. Mater., 2012, 24, 2228.
    連結:
  105. 110. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, "Bulk heterojunction solar cells with internal quantum efficiency approaching 100%." Nat. Photonics, 2009, 3, 297.
    連結:
  106. 111. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, "For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%." Adv. Mater., 2010, 22, E135.
    連結:
  107. 112. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, "Polymer solar cells with enhanced open-circuit voltage and efficiency." Nat. Photonics, 2009, 3, 649.
    連結:
  108. 113. M. Zhang, Irfan, H. Ding, Y. Gao and C. W. Tang, "Organic Schottky barrier photovoltaic cells based on MoOx/C60." Appl. Phys. Lett., 2010, 96, 183301.
    連結:
  109. 114. M. Zhang, H. Wang, H. Tian, Y. Geng and C. W. Tang, "Bulk heterojunction photovoltaic cells with low donor concentration." Adv. Mater., 2011, 23, 4960.
    連結:
  110. 115. X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann and S. R. Forrest, "A hybrid planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell." Appl. Phys. Lett., 2013, 102, 073302.
    連結:
  111. 116. Y.-q. Zheng, W. J. Potscavage, T. Komino, M. Hirade, J. Adachi and C. Adachi, "Highly efficient bulk heterojunction photovoltaic cells based on C70 and tetraphenyldibenzoperiflanthene." Appl. Phys. Lett., 2013, 102, 143304.
    連結:
  112. 117. G. Chen, H. Sasabe, Z. Wang, X. F. Wang, Z. Hong, Y. Yang and J. Kido, "Co-evaporated bulk heterojunction solar cells with >6.0% efficiency." Adv. Mater., 2012, 24, 2768.
    連結:
  113. 118. G. Chen, H. Sasabe, Z. Wang, X. Wang, Z. Hong, J. Kido and Y. Yang, "Solution-processed organic photovoltaic cells based on a squaraine dye." Phys. Chem. Chem. Phys., 2012, 14, 14661.
    連結:
  114. 119. B. Yang, F. Guo, Y. Yuan, Z. Xiao, Y. Lu, Q. Dong and J. Huang, "Solution-processed fullerene-based organic Schottky junction devices for large-open-circuit-voltage organic solar cells." Adv. Mater., 2013, 25, 572.
    連結:
  115. 120. J. Lee, N. Chopra, S.-H. Eom, Y. Zheng, J. Xue, F. So and J. Shi, "Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices." Appl. Phys. Lett., 2008, 93, 123306.
    連結:
  116. 121. J.-W. Kang, S.-H. Lee, H.-D. Park, W.-I. Jeong, K.-M. Yoo, Y.-S. Park and J.-J. Kim, "Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes." Appl. Phys. Lett., 2007, 90, 223508.
    連結:
  117. 122. H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori and Y. Shirota, "High-Performance Organic Photovoltaic Devices Using a New Amorphous Molecular Material with High Hole Drift Mobility, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine." Adv. Funct. Mater., 2009, 19, 3948.
    連結:
  118. 123. S. A. Choulis, Y. Kim, J. Nelson, D. D. C. Bradley, M. Giles, M. Shkunov and I. McCulloch, "High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene)." Appl. Phys. Lett., 2004, 85, 3890.
    連結:
  119. 124. D. Yokoyama, Z. Qiang Wang, Y.-J. Pu, K. Kobayashi, J. Kido and Z. Hong, "High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors." Sol. Energy Mater. Sol. Cells, 2012, 98, 472.
    連結:
  120. 125. D. Fujishima, H. Kanno, T. Kinoshita, E. Maruyama, M. Tanaka, M. Shirakawa and K. Shibata, "Organic thin-film solar cell employing a novel electron-donor material." Sol. Energy Mater. Sol. Cells, 2009, 93, 1029.
    連結:
  121. 參考文獻
  122. 2. N. R. E. Laboratory, http://www.nrel.gov/.
  123. 9. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, "19•9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81•2% fill factor." Progress in Photovoltaics: Research and Applications, 2008, 16, 235.
  124. 10. M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (Version 34)." Progress in Photovoltaics: Research and Applications, 2009, 17, 320.
  125. 32. Y.-H. Chang, S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng and C.-S. Hsu, "Polymer solar cell by blade coating." Org. Electron., 2009, 10, 741.
  126. 48. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency." Nat Commun., 2013, 4, 1446.