Title

以旋塗與奈米壓印製作發光層之有機發光二極體

Translated Titles

Organic Light-Emitting Diodes with Spin-Coated and Nano-Imprinted Emissive Layers

DOI

10.6843/NTHU.2013.00523

Authors

彭祥灝

Key Words

有機發光二極體 ; 旋塗 ; 奈米壓印 ; Organic Light-Emitting Diode ; Spin-Coat ; Nano-Imprint

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

博士

Advisor

周卓煇

Content Language

繁體中文

Chinese Abstract

有機發光二極體因可應用於顯示及照明,逐漸受到矚目;為早日應用,製造成本將是首要考量;因此,許多研究紛紛投入研製溼式製程;市場研究機構Nanomarkets預估,2013年溼式製程材料產值為5,000萬美元,2019年將大幅成長至80,000萬美元,再次顯示發展溼式製程的重要;據此,本研究使用兩種不同的溼式製程,製備有機發光二極體的發光層。 第一部分,我們利用旋塗製程,製備藍光及綠光有機發光二極體;其中,新穎綠磷光材料bis[5-methyl-8-trifluoromethyl-5H-benzo(c)(1,5) naphthyridin-6-one]iridium(picolinate) (3-CF3BNO),具有短激態生命期(0.39 μs)及相對高量子產率(72%),與適當的主體搭配,當亮度在100及1,000 cd/m2時,效率分別為52及61 lm/W、外部量子效率為18%及23%,為目前綠光元件在濕式製程中的能量效率世界記錄。 第二部分,為克服小分子型材料不易轉印,我們研發一小分子及高分子型混合式主體方法,成功將發光層轉印至元件上,製備藍、綠、紅及白光有機發光二極體,所得的元件最大亮度分別為29,000、29,000、4,000及18,000 cd/m2;能成功轉印可歸因於混合式主體可提供高分子型主體好的成膜特性,亦具備小分子型主體好的電致發光特性。

English Abstract

Organic light-emitting diodes (OLEDs) are attracting increasing interest owing to their promising applications in flat panel displays and solid-state lighting. To make it applicable soon, manufacturing cost is the top priority to be considered. Therefore, this can explain why numerous researches have been paid much effort on design and fabrication of solution process. Nanomarkets estimates that the output value of solution-processable materials is 50 million US dollars in 2013, and will markedly increase to 800 million in 2019, again indicating that the importance of development of solution process. In this report, two different solution processes are employed to fabricate the emissive layers in OLED devices. In the first part, blue and green OLEDs are fabricated via solution process by using a novel phosphorescent material, bis[5-methyl-8-trifluoromethyl-5H-benzo(c) (1,5) naphthyridin-6-one] iridium(picolinate) (3-CF3BNO), which has a short excited-state lifetime (0.39 μs) and a relatively high quantum yield (72 %). Coupled with an appropriate host material, the resultant green OLED shows an efficacy of 52 and 61 lm/W and external quantum efficiency of 18 and 23 % at 100 and 1,000 cd/m2, the highest among all reported solution-processed green OLEDs. In the second part, to overcome the disadvantage of molecular material that is not easy to be used in contact-printing, a method of blending with molecular and polymer host is designed and fabricated to contact-print the emissive layer onto the OLED devices successfully. By using this method, the maximum luminance of fabricated blue, green, red, and white OLEDs is 29,000, 29,000, 4,000, and 18,000 cd/m2, respectively. That contact-printing can be achieved successfully may be attributed to the blended host, which is composed of a polymer host with a good film integrity and a molecular host with a fine electroluminescence character.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. 1. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
    連結:
  2. 3. Prache, Displays, 2001, 22, 49.
    連結:
  3. 6. R. F. Service, Science, 2005, 310, 1762.
    連結:
  4. 8. A. Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 50, 64 (1953).
    連結:
  5. 10. W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
    連結:
  6. 11. W. Helfrich, W. G. Schneider, J. Chem. Phys. 44, 2902 (1966).
    連結:
  7. 13. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
    連結:
  8. 18. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 27, 713 (1988).
    連結:
  9. 22. J. Shi, C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
    連結:
  10. 29. Y. Shao, Y. Yang, Appl. Phys. Lett. 86, 073510 (2005)
    連結:
  11. 30. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, Appl. Phys. Lett. 88, 193501 (2006)
    連結:
  12. 31. Y. Sun and S. R. Forrest, Nat. Photonics 2 (8), 483-487 (2008).
    連結:
  13. 35. Dodabalapur, Bell Lab. Solid State Com. 102, 259 (1997).
    連結:
  14. 39. P. N. Murgatroyd, J. Phys. D, 3, 151 (1970).
    連結:
  15. 43. L. Dexter, J. Chem. Phys. 21, 836 (1953).
    連結:
  16. 44. 陳金鑫, 黃孝文, OLED有機電激發光材料與元件 (2005)
    連結:
  17. 46. M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence, 87, 1165 (2000).
    連結:
  18. 48. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
    連結:
  19. 49. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 86, 1688 (1999).
    連結:
  20. 52. C. Hosokawa, H. Higashi, T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
    連結:
  21. 53. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
    連結:
  22. 55. C. Adachi, T. Tsutsui, S. Satio, Appl. Phys. Lett. 56, 799 (1990).
    連結:
  23. 58. C Ganzorig, K Suga, M. Fujihira, Mater. Sci. Eng. B 85, 140 (2001).
    連結:
  24. 61. T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett. 73, 2763 (1998).
    連結:
  25. 66. C. J. Chang, C.H. Yang, K. Chen, Y. Chi, C. F. Shu, N. L. Ho, Y. S. Yeh, P. T. Chou, Dalton Trans. 1881, (2007).
    連結:
  26. 67. W. S. Huang, J. T. Lin, C. H. Chien, Y. T. Tao, S. S. Sun, Y. S. Wen, Chem. Mater. 16, 2480, (2004).
    連結:
  27. 68. J. H. Jou, C. C. Chen, Y. C. Chung, M. F. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang, J. J. Shyue, Adv. Funct. Mater. 18, 121, (2008).
    連結:
  28. 69. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai, C. Chang, Appl. Phys. Lett. 92, 223504. (2008).
    連結:
  29. 70. S. Watanabe, N. Ide, J. Kido, Jpn. J. Appl. Phys. 46, 3A 1186, (2007).
    連結:
  30. 75. A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 63, 2002, (1993).
    連結:
  31. 76. Y. N. Xia and G. M. Whitesides, J. Am. Chem. Soc. 117, 3274, (1995).
    連結:
  32. 81. S. H. Hur, D. Y. Khang, C. Kocabas, and J. A. Rogers, Appl. Phys. Lett. 85, 5730, (2004).
    連結:
  33. 82. S. M. Huang, Q. Fu, L. An, and J. Liu, Phys. Chem. Chem. Phys. 6, 1077, (2004).
    連結:
  34. 83. F. Nuesch, Y. Li, and L. J. Rothberg, Appl. Phys. Lett. 75, 1799, (1999).
    連結:
  35. 89. C. Kim and S. R. Forrest, Adv. Mater. 15, 541, (2003).
    連結:
  36. 90. J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen, H. Y. Chen, Chem. Mater. 21, 2565, (2009).
    連結:
  37. 98. B. M. Hasch, M. A. Meilchen, S. H. Lee, and M. A. McHugh, J. Polym. Sci. Part B-Polym. Phys. 31, 429, (1993).
    連結:
  38. 101. H. Hillborg and U. W. Gedde, Polymer 39, 1991, (1998).
    連結:
  39. 102. M. J. Owen and P. J.Smith, J. Adhesion Sci. Technol. 8, 1063, (1994).
    連結:
  40. 2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 1990, 347, 539.
  41. 4. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 1997, 22, 172.
  42. 5. J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Appl. Phys. Lett., 2004, 85, 3450.
  43. 7. Y. Sun , N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature, 2006, 440, 908.
  44. 9. P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963).
  45. 12. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Solid Thin Films, 94, 171 (1982).
  46. 14. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Patent 1988, No. 4,720,432.
  47. 15. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
  48. 16. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990)
  49. 17. R. H. Friend, J. H. Burroughs, and D. D. C. Bradley, US. Patent 1993, No. 5,247,190.
  50. 19. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 178, 488 (1991).
  51. 20. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
  52. 21. J. Kido, M. Kimura, K. Nagai, Science, 267, 1332 (1995).
  53. 23. G. E. Jebbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998).
  54. 24. J. Kido, T. Mazukami, US. Patent 2000, No. 6,013,384.
  55. 25. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Slbley, M. E. Thompson, S. R. Forrest, Nature 195, 151 (1998).
  56. 26. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 75, 1 (1999)
  57. 27. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett. 80, 1 (2002)
  58. 28. Y. Sun, N. C. Giebink, H. Kanno, B Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 04645 (2006).
  59. 32. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature 459 (7244), 234-U116 (2009).
  60. 33. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu and Z. H. Lu, Nature Photonics, 5, 753-757, (2011).
  61. 34. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234-238, (2012).
  62. 36. W. D. Gill, J. Appl. Phys. 43, 5033 (1972).
  63. 37. U. Wolf, V. I. Arkhipov, H. Bässler, Phys. Rev. B, 59, 7507 (1999).
  64. 38. M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York, Academic Press.
  65. 40. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 1 (1997).
  66. 41. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 83, 4928 (1998).
  67. 42. T. Förster, Ann. Phys. 6, 55 (1948).
  68. 45. M. Klessonger, J. Michl, ”Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York (1995)
  69. 47. J. S. Kim, M. Granström, R. H. Frienf, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F Cacialli, J. Appl. Phys. 84, 6859 (1998).
  70. 50. K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 10, 1017 (1998).
  71. 51. S. A. VanSlyke, C. H. Chen, C. W. Tang, US. Patent 1991, No. 5,061,569.
  72. 54. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, S. Yi, Adv. Mater. 7, 551 (1995).
  73. 56. J. Shi, C. W. Tang, C. H. Chen, US. Patent 1997, No. 5,646,948.
  74. 57. T. Wakimoto, Y. Fukuda, K, Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron. Device, 44, 1245 (1997).
  75. 59. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, J. Appl. Phys. 93, 6159 (2003)
  76. 60. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, Appl. Phys. Lett. 84, 2324 (1998).
  77. 62. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern, M. Stoβel, J. Appl. Phys. 89, 420 (2001)
  78. 63. L. S. Hung, and C. W. Tang, US. Patent 1997, No. 5,677,572.
  79. 64. M. A. Baldo, D. F. Brlen, and S. R. Forrect, US. Patent 2000, No. 6,097,147.
  80. 65. Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
  81. 71. D. Tanaka, H. Sasabe, Y. J. Li, S. S. Su, T. Takeda, J. Kido, Jpn. J. Appl. Phys. 46, 1, L10. (2007).
  82. 72. S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel, Adv. Mater. 14, 975, (2002)
  83. 73. X. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 18, 948 (2006).
  84. 74. N. Rehmann, D. Hertel, K. Meerholz, H. Becker, S. Heun, Appl. Phys. Lett. 91, 103507, (2007).
  85. 77. L. Deng, M. Mrksich, and G. M. Whitesides, J. Am. Chem. Soc. 118, 5136, (1996).
  86. 78. C. Xu, P. Taylor, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, J. Mater. Chem. 13, 3044, (2003).
  87. 79. S. A. Lange, V. Benes, D. P. Kern, J. K. H. Horber, and A. Bernard, Anal. Chem. 76, 1641, (2004).
  88. 80. K. E. Schmalenberg, H. M. Buettner, and K. E. Uhrich, Biomaterials 25, 1851, (2004).
  89. 84. Y. Koide, Q. Wang, J. Cui, D. D. Benson, and T. J. Marks, J. Am. Chem. Soc. 122, 11266, (2000).
  90. 85. Y. Koide, M. W. Such, R. Basu, G. Evmenenko, J. Cui, P. Dutta, M. C. Hersam, and T. J. Marks, Langmuir 19, 86, (2003).
  91. 86. T. L. Breen, P. M. Fryer, R. W. Nunes, and M. E. Rothwell, Langmuir 18, 194, (2002).
  92. 87. T. Granlund, T. Nyberg, L. S. Roman, M. Svensson, and O. Inganas, Adv. Mater. 12, 269, (2000).
  93. 88. C. Kim, M. Shtein, and S. R. Forrest, Appl. Phys. Lett. 80, 4051, (2002).
  94. 91. C. W. Joo, K. Yook, S. O. Jeon, J. Y. Lee, Org. Electron. 10, 978, (2009)
  95. 92. M. S. Soh, S. A. G. Santamaria, E. L. Williams, M. Perez-Morales, H. J. Bolink, A. Sellinger, J. Polym. Sci. Pol. Phys. 49, 531, (2011)
  96. 93. J. J. Park, T. J. Park, W. S. Jeon, R. Pode, J. Jang, J. H. Kwon, E. S. Yu, M. Y. Chae, Org. Electron. 10, 189, (2009)
  97. 94. X. Yang, D. C. Muller, D. Neher, K. Meerholz, Adv. Mater. 18, 948, (2006)
  98. 95. M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, J. Shinar, Adv. Mater. 23, 3590, , (2011)
  99. 96. H. Wu, J. Zou, D. An, F. Liu, W. Yang, Y. Peng, A. Mikhailovsky, G. C. Bazan, Y. Cao, Org. Electron. 10, 1562, , (2009)
  100. 97. J. T. Rubino and S. H. Yalkowsky, Pharm. Res. 4, 220, (1987).
  101. 99. B. Ray and B. M. Mandal, Langmuir 13, 2191, (1997).
  102. 100. G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck, and G. M. Whitesides, Macromolecules 26, 5870, (1993).
  103. 103. P. Kopola, M. Tuomikoski, R. Suhonen and A. Maaninen, Thin Solid Films 517, 5757, (2009).
  104. 104. W. C. Lin, Y. C. Lin, W. B. Wang, B. Y. Yu, S. Iida, M. Tozu, M. F. Hsu, J. H. Jou, and J. J. Shyue, Org. Electron. 10, 459, (2009).
Times Cited
  1. 林方婷(2010)。投資稅負對企業權益資金成本之影響。政治大學會計研究所學位論文。2010。1-86。