透過您的圖書館登入
IP:3.21.106.69
  • 學位論文

自組裝磊晶金屬矽化物與鍺化物奈米線之研究

Growth of Self-Assembled Epitaxial Metal Silicide and Germanide Nanowires

指導教授 : 陳力俊
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文以自組裝磊晶奈米線為主體,分為兩部分:三元合金矽化物(鈷鎳矽)奈米線以及鍺化鎳奈米線;皆利用反應性沉積磊晶技術來製備。 在三元合金矽化物奈米線的研究中,發現到使用覆蓋一層薄氧化層的矽基板,可幫助奈米線的成長,提高其長寬比。我們針對這些奈米線與矽基板的磊晶關係做詳細的分析,並以鈷鎳原子在奈米線中的成分分佈情形為依據,探討奈米線的生成過程。 在鍺化鎳奈米線的研究中,發現到這些奈米線皆沿著鍺的<110>方向成長,因此在(110)的鍺基板上,可以成長出單一方向具有高長寬比的奈米線。亦發現氧化鍺會阻礙奈米線的成長,因此在實驗前將試片做額外的熱處理,可避免氧化鍺的干擾,並可藉此降低奈米線的成長溫度。另外,我們研究了鍺化鎳奈米線的電性,發現此奈米線具有低電阻以及可容忍高電流密度的性質。

並列摘要


In this thesis, self-assembled epitaxial Co1-xNixSi2 and nickel germanide nanowires are fabricated by reactive deposition epitaxy technique. Self-assembled epitaxial Co1-xNixSi2 nanowires are formed on thin-oxide-capped (001)Si substrates. The thin native oxide layer can promote the growth of nanowires. The epitaxial relationships between nanowires and substrates and the elemental distributions of Ni and Co in nanowires are analyzed, and the formation process of nanowires is discussed. Self-assembled epitaxial nickel germanide nanowires are formed on Ge substrates. They grow parallel to the <110>Ge directions and have high aspect ratios on (110)Ge. The native germanium oxide layer can be removed by degassing and flashing in the ultrahigh vacuum chamber before the reactive deposition epitaxy process. This procedure can lower the formation temperature of nickel germanide nanowires and improve their morphology. Two-probe current-voltage measurements of the nickel germanide nanowires exhibit the low resistivity and high maximum current density.

並列關鍵字

Metal Silicide Metal Germanide Nanowires

參考文獻


7. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, ZnO Nanowire UV Photodetectors with High Internal Gain, Nano Lett. 7, 1003-1009 (2007).
2. R. P. Feynman, There’s Plenty of Room at the Bottom, at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
3. V. Balzani, A. Credi, and M. Venturi, The Bottom-Up Approach to Molecular-Level Devices and Machines, Chem. Eur. J. 8, 5524-5532 (2002).
4. G. M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science 295, 2418-2421 (2002).
5. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science 293, 1289-1292 (2001).

延伸閱讀