Title

自組裝磊晶金屬矽化物與鍺化物奈米線之研究

Translated Titles

Growth of Self-Assembled Epitaxial Metal Silicide and Germanide Nanowires

Authors

李汶珊

Key Words

金屬矽化物 ; 金屬鍺化物 ; 奈米線 ; Metal Silicide ; Metal Germanide ; Nanowires

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

博士

Advisor

陳力俊

Content Language

英文

Chinese Abstract

本論文以自組裝磊晶奈米線為主體,分為兩部分:三元合金矽化物(鈷鎳矽)奈米線以及鍺化鎳奈米線;皆利用反應性沉積磊晶技術來製備。 在三元合金矽化物奈米線的研究中,發現到使用覆蓋一層薄氧化層的矽基板,可幫助奈米線的成長,提高其長寬比。我們針對這些奈米線與矽基板的磊晶關係做詳細的分析,並以鈷鎳原子在奈米線中的成分分佈情形為依據,探討奈米線的生成過程。 在鍺化鎳奈米線的研究中,發現到這些奈米線皆沿著鍺的<110>方向成長,因此在(110)的鍺基板上,可以成長出單一方向具有高長寬比的奈米線。亦發現氧化鍺會阻礙奈米線的成長,因此在實驗前將試片做額外的熱處理,可避免氧化鍺的干擾,並可藉此降低奈米線的成長溫度。另外,我們研究了鍺化鎳奈米線的電性,發現此奈米線具有低電阻以及可容忍高電流密度的性質。

English Abstract

In this thesis, self-assembled epitaxial Co1-xNixSi2 and nickel germanide nanowires are fabricated by reactive deposition epitaxy technique. Self-assembled epitaxial Co1-xNixSi2 nanowires are formed on thin-oxide-capped (001)Si substrates. The thin native oxide layer can promote the growth of nanowires. The epitaxial relationships between nanowires and substrates and the elemental distributions of Ni and Co in nanowires are analyzed, and the formation process of nanowires is discussed. Self-assembled epitaxial nickel germanide nanowires are formed on Ge substrates. They grow parallel to the <110>Ge directions and have high aspect ratios on (110)Ge. The native germanium oxide layer can be removed by degassing and flashing in the ultrahigh vacuum chamber before the reactive deposition epitaxy process. This procedure can lower the formation temperature of nickel germanide nanowires and improve their morphology. Two-probe current-voltage measurements of the nickel germanide nanowires exhibit the low resistivity and high maximum current density.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. 2. R. P. Feynman, There’s Plenty of Room at the Bottom, at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
    連結:
  2. 3. V. Balzani, A. Credi, and M. Venturi, The Bottom-Up Approach to Molecular-Level Devices and Machines, Chem. Eur. J. 8, 5524-5532 (2002).
    連結:
  3. 4. G. M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science 295, 2418-2421 (2002).
    連結:
  4. 5. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science 293, 1289-1292 (2001).
    連結:
  5. 6. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires, Science 293, 1455-1457 (2001).
    連結:
  6. 7. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, ZnO Nanowire UV Photodetectors with High Internal Gain, Nano Lett. 7, 1003-1009 (2007).
    連結:
  7. 8. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292, 1897-1899 (2001).
    連結:
  8. 9. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Single-Nanowire Electrically Driven Lasers, Nature 421, 241-245 (2003).
    連結:
  9. 11. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Subwavelength-Diameter Silica Wires for Low-Loss Optical Wave Guiding, Nature 426, 816-819 (2003).
    連結:
  10. 12. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Nanoribbon Waveguides for Subwavelength Photonics Integration, Science 305, 1269-1273 (2004).
    連結:
  11. 13. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire Dye-Sensitized Solar Cells, Nat. Mater. 4, 455-459 (2005).
    連結:
  12. 14. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced Thermoelectric Performance of Rough Silicon Nanowires, Nature 451, 163-167 (2008).
    連結:
  13. 15. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard III, and J. R. Heath, Silicon Nanowires as Efficient Thermoelectric Materials, Nature 451, 168-171 (2008).
    連結:
  14. 16. Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 312, 242-246 (2006).
    連結:
  15. 17. X. Wang, J. Song, J. Liu, and Z. L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science 316, 102-105 (2007).
    連結:
  16. 18. Y. Qin, X. Wang, and Z. L. Wang, Microfibre-Nanowire Hybrid Structure for Energy Scavenging, Nature 451, 809-813 (2008).
    連結:
  17. 19. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science 289, 94-97 (2000).
    連結:
  18. 20. S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic Domain-Wall Racetrack Memory, Science 320, 190-194 (2008).
    連結:
  19. 21. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, Logic Gates and Computation from Assembled Nanowire Building Blocks, Science 294, 1313-1317 (2001).
    連結:
  20. 22. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science 294, 1317-1320 (2001).
    連結:
  21. 24. D. Kahng and M. P. Lepselter, Planar Epitaxial Silicon Schottky Barrier Diodes, Bell Syst. Tech. J. 44, 1525-1528 (1965).
    連結:
  22. 25. S.-L. Zhang and M. Östling, Metal Silicides in CMOS Technology: Past, Present, and Future Trends, Crit. Rev. Solid State Mat. Sci. 28, 1-129 (2003).
    連結:
  23. 26. D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition, Appl. Phys. Lett. 75, 1736-1738 (1999).
    連結:
  24. 27. P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, New Salicidation Technology with Ni(Pt) Alloy for MOSFETs, IEEE Electron Device Lett. 22, 568-570 (2001).
    連結:
  25. 28. Y.-C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K. J. Yang, I. Polishchuk, T.-J. King, C. Hu, S. C. Song, H. F. Luan, and D.-L. Kwong, Dual-Metal Gate CMOS Technology with Ultrathin Silicon Nitride Gate Dielectric, IEEE Electron Device Lett. 22, 227-229 (2001).
    連結:
  26. 29. M. Qin, V. M. C. Poon, and S. C. H. Ho, Investigation of Polycrystalline Nickel Silicide Films as a Gate Material, J. Electrochem. Soc. 148, G271-G274 (2001).
    連結:
  27. 30. W. P. Maszara, Z. Krivokapic, P. King, J.-S. Goo, and M.-R. Lin, Transistors with Dual Work Function Metal Gates by Single Full Silicidation (FUSI) of Polysilicon Gates, in Int. Electron Devices Meet. Tech. Dig., 367-370 (2002).
    連結:
  28. 31. J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, Dual Work Function Metal Gates Using Full Nickel Silicidation of Doped Poly-Si, IEEE Electron Device Lett. 24, 631-633 (2003).
    連結:
  29. 33. R. T. P. Lee, S. L. Liew, W. D. Wang, E. K. C. Chua, S. Y. Chow, M. Y. Lai, and D. Z. Chi, Fully Silicided Ni1-xPtxSi Metal Gate Electrode for p-MOSFETs, Electrochem. Solid State Lett. 8, G156-G159 (2005).
    連結:
  30. 34. J. Liu, H. C. Wen, J. P. Lu, and D.-L. Kwong, Dual-Work-Function Metal Gates by Full Silicidation of Poly-Si with Co-Ni Bi-Layers, IEEE Electron Device Lett. 26, 228-230 (2005).
    連結:
  31. 35. J. Liu and D. L. Kwong, Phase Formation and Work Function Tuning in Fully Silicided Co-Ni Metal Gates with Variable Co:Ni Ratios, Appl. Phys. Lett. 88, 052109 (2006).
    連結:
  32. 38. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International (1991).
    連結:
  33. 39. F. M. d’Heurle, D. D. Anfiteatro, V. R. Deline, and T. G. Finstad, Reaction of Silicon with Films of Co-Ni Alloys: Phase Separation of the Monosilicides and Nucleation of the Disilicides, Thin Solid Films 128, 107-124 (1985).
    連結:
  34. 40. T. G. Finstad, D. D. Anfiteatro, V. R. Deline, F. M. d’Heurle, P. Gas, V. L. Moruzzi, K. Schwarz, and J. Tersoff, The Formation of Disilicides from Bilayers of Ni/Co and Co/Ni on Silicon: Phase Separation and Solid Solution, Thin Solid Films 135, 229-243 (1986).
    連結:
  35. 41. C. Detavernier, R. L. V. Meirhaeghe, F. Cardon, and K. Maex, Influence of Mixing Entropy on the Nucleation of CoSi2, Phys. Rev. B 62, 12045-12051 (2000).
    連結:
  36. 42. C. Lavoie, C. Cabral, Jr., F. M. d’Heurle, J. L. Jordan-Sweet, and J. M. E. Harper, Effects of Alloying Elements on Cobalt Silicide Formation, J. Electron. Mater. 31, 597-609 (2002).
    連結:
  37. 43. S. S. Guo and C. J. Tsai, Reaction Sequence of Co/Ni/Si(001) System, J. Vac. Sci. Technol. A 21, 628-633 (2003).
    連結:
  38. 44. K. Ma and J. Y. Feng, Effect of Pre-Co-Deposition Ni Ion Implantation on the Stress Level of CoSi2 Films on Si(100), J. Cryst. Growth 270, 15-20 (2004).
    連結:
  39. 45. K. Ma and J. Y. Feng, Effect of Ni Interlayer on Stress Level of CoSi2 Films in Co/Ni/Si(100) Bi-Layered System, Appl. Surf. Sci. 252, 1679-1684 (2005).
    連結:
  40. 46. M. Xu, A. Vantomme, K. Vanormelingen, and S. D. Yao, Growth of Oxide-Mediated Ternary Silicide Controlled by a Si Cap Layer by Rapid Thermal Annealing, Physica E 40, 484-488 (2008).
    連結:
  41. 47. D. Smeets, A. Vantomme, K. D. Keyser, C. Detavernier, and C. Lavoie, The Role of Lattice Mismatch and Kinetics in Texture Development: Co1-xNixSi2 Thin Films on Si(100), J. Appl. Phys. 103, 063506 (2008).
    連結:
  42. 48. Z. Xia and S. Huang, Structure and Property of Magnetron Sputtered Ternary Cobalt-Nickel Silicide Films, Microelectron. Eng. 87, 1828-1833 (2010).
    連結:
  43. 49. Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X.-P. Qu, Y.-L. Jiang, D. Deduytsche, and C. Detavernier, Germanium Surface Passivation and Atomic Layer Deposition of High-k Dielectrics-A Tutorial Review on Ge-Based MOS Capacitors, Semicond. Sci. Technol. 27, 074012 (2012).
    連結:
  44. 50. S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, Thin Film Reaction of Transition Metals with Germanium, J. Vac. Sci. Technol. A 24, 474-485 (2006).
    連結:
  45. 52. H. Takizawa, K. Uheda, and T. Endo, NiGe2: A New Intermetallic Compound Synthesized under High-Pressure, J. Alloy. Compd. 305, 306-310 (2000).
    連結:
  46. 53. P. S. Y. Lim, D. Z. Chi, P. C. Lim, X. C. Wang, T. K. Chan, T. Osipowicz, and Y.-C. Yeo, Formation of Epitaxial Metastable NiGe2 Thin Film on Ge(100) by Pulsed Excimer Laser Anneal, Appl. Phys. Lett. 97, 182104 (2010).
    連結:
  47. 54. S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, Reaction of Thin Ni Films with Ge: Phase Formation and Texture, J. Appl. Phys. 100, 034306 (2006).
    連結:
  48. 55. F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, and J. L. Lábár, Simultaneous Growth of Ni5Ge3 and NiGe by Reaction of Ni Film with Ge, Appl. Phys. Lett. 89, 131920 (2006).
    連結:
  49. 56. C. Yan, J. M. Higgins, M. S. Faber, P. S. Lee, and S. Jin, Spontaneous Growth and Phase Transformation of Highly Conductive Nickel Germanide Nanowires, ACS Nano 5, 5006-5014 (2011).
    連結:
  50. 57. J. Tang, C.-Y. Wang, F. Xiu, A. J. Hong, S. Chen, M. Wang, C. Zeng, H.-J. Yang, H.-Y. Tuan, C.-J. Tsai, L. J. Chen, and K. L. Wang, Single-Crystalline Ni2Ge/Ge/Ni2Ge Nanowire Heterostructure Transistors, Nanotechnology 21, 505704 (2010).
    連結:
  51. 58. J. Tang, C.-Y. Wang, F. Xiu, M. Lang, L.-W. Chu, C.-J. Tsai, Y.-L. Chueh, L.-J. Chen, and K. L. Wang, Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors, ACS Nano 5, 6008-6015 (2011).
    連結:
  52. 59. R. Pretorius, T. K. Marais, and C. C. Theron, Thin Film Compound Phase Formation Sequence: An Effective Heat of Formation Model, Mater. Sci. Eng. R-Rep. 10, 1-83 (1993).
    連結:
  53. 60. A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, Concentration-Controlled Phase Selection of Silicide Formation during Reactive Deposition, Appl. Phys. Lett. 74, 3137-3139 (1999).
    連結:
  54. 61. C. W. Lim, C.-S. Shin, D. Gall, J. M. Zuo, I. Petrov, and J. E. Greene, Growth of CoSi2 on Si(001) by Reactive Deposition Epitaxy, J. Appl. Phys. 97, 044909 (2005).
    連結:
  55. 62. R. Nath, C. W. Soo, C. B. Boothroyd, M. Yeadon, D. Z. Chi, H. P. Sun, Y. B. Chen, X. Q. Pan, and Y. L. Foo, NiGe on Ge(001) by Reactive Deposition Epitaxy: An In Situ Ultrahigh-Vacuum Transmission-Electron Microscopy Study, Appl. Phys. Lett. 86, 201908 (2005).
    連結:
  56. 63. G. B. Kim, D.-J. Yoo, H. K. Baik, J.-M. Myoung, S. M. Lee, S. H. Oh, and C. G. Park, Improved Thermal Stability of Ni Silicide on Si (100) through Reactive Deposition of Ni, J. Vac. Sci. Technol. B 21, 319-322 (2003).
    連結:
  57. 64. S. Y. Chen and L. J. Chen, Self-Assembled Epitaxial NiSi2 Nanowires on Si(001) by Reactive Deposition Epitaxy, Thin Solid Films 508, 222-225 (2006).
    連結:
  58. 65. S. Liang, R. Islam, D. J. Smith, and P. A. Bennett, Phase Transformation in FeSi2 Nanowires, J. Cryst. Growth 295, 166-171 (2006).
    連結:
  59. 66. D. Wang and Z.-Q. Zou, Formation of Manganese Silicide Nanowires on Si(111) Surfaces by the Reactive Epitaxy Method, Nanotechnology 20, 275607 (2009).
    連結:
  60. 67. L. J. Chen, Metal Silicides: An Integral Part of Microelectronics, JOM 57, 24-30 (2005).
    連結:
  61. 68. T.-T. Sheng and C. C. Chang, Transmission Electron Microscopy of Cross Sections of Large Scale Integrated Circuits, IEEE Trans. Electron Devices ED-23, 531-533 (1976).
    連結:
  62. 69. C. R. K. Marrian and D. M. Tennant, Nanofabrication, J. Vac. Sci. Technol. A 21, S207-S215 (2003).
    連結:
  63. 70. C. Preinesberger, S. Vandré, T. Kalka, and M. Dähne-Prietsch, Formation of Dysprosium Silicide Wires on Si(001), J. Phys. D 31, L43-L45 (1998).
    連結:
  64. 71. J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge, Self-Assembled Rare-Earth Silicide Nanowires on Si(001), Phys. Rev. B 63, 233305 (2001).
    連結:
  65. 72. Y. Chen, D. A. A. Ohlberg, and R. S. Williams, Nanowires of Four Epitaxial Hexagonal Silicides Grown on Si(001), J. Appl. Phys. 91, 3213-3218 (2002).
    連結:
  66. 73. Z. He, D. J. Smith, and P. A. Bennett, Endotaxial Silicide Nanowires, Phys. Rev. Lett. 93, 256102 (2004).
    連結:
  67. 74. W.-C. Yang, H. Ade, and R. J. Nemanich, Shape Stability of TiSi2 Islands on Si (111), J. Appl. Phys. 95, 1572-1576 (2004).
    連結:
  68. 75. J.-H. Lee, Wirelike Growth of Self-Assembled Hafnium Silicides: Oxide Mediated Epitaxy, Appl. Surf. Sci. 239, 268-272 (2005).
    連結:
  69. 76. H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa, and P. A. Bennett, In Situ Resistance Measurements of Epitaxial Cobalt Silicide Nanowires on Si(110), Appl. Phys. Lett. 86, 233108 (2005).
    連結:
  70. 77. S. Y. Chen and L. J. Chen, Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001)Si, Appl. Phys. Lett. 87, 253111 (2005).
    連結:
  71. 78. S. Y. Chen, H. C. Chen, and L. J. Chen, Self-Assembled Endotaxial -FeSi2 Nanowires with Length Tunability Mediated by a Thin Nitride Layer on (001)Si, Appl. Phys. Lett. 88, 193114 (2006).
    連結:
  72. 79. H.-C. Hsu, W.-W. Wu, H.-F. Hsu, and L.-J. Chen, Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface, Nano Lett. 7, 885-889 (2007).
    連結:
  73. 80. T. Soubiron, R. Stiufiuc, L. Patout, D. Deresmes, B. Grandidier, D. Stiévenard, J. Köble, and M. Maier, Transport Limitations and Schottky Barrier Height in Titanium Silicide Nanowires Grown on the Si(111) Surface, Appl. Phys. Lett. 90, 102112 (2007).
    連結:
  74. 81. D. Qiu, M.-X. Zhang, and P. M. Kelly, Crystallography of Self-Assembled DySi2 Nanowires on a Si Substrate, Appl. Phys. Lett. 94, 083105 (2009).
    連結:
  75. 82. T. Kim, R. V. Chamberlin, P. A. Bennett, and J. P. Bird, Dynamical Characteristics of the Giant Magneto-Resistance of Epitaxial Silicide Nanowires, Nanotechnology 20, 135401 (2009).
    連結:
  76. 83. T. Kim and J. P. Bird, Electrical Signatures of Ferromagnetism in Epitaxial FeSi2 Nanowires, Appl. Phys. Lett. 97, 263111 (2010).
    連結:
  77. 84. I.-H. Hong, Y.-F. Tsai, and T.-M. Chen, Self-Organization of Mesoscopically Ordered Parallel Gd-Silicide Nanowire Arrays on a Si(110)-16×2 Surface: A Massively Parallel Active Architecture, Appl. Phys. Lett. 98, 193118 (2011).
    連結:
  78. 85. S.-Y. Chen, P.-H. Yeh, W.-W. Wu, U.-S. Chen, Y.-L. Chueh, Y.-C. Yang, S. Gwo, and L.-J. Chen, Low Resistivity Metal Silicide Nanowires with Extraordinarily High Aspect Ratio for Future Nanoelectronic Devices, ACS Nano 5, 9202-9207 (2011).
    連結:
  79. 86. J. A. Kittl, A. Lauwers, O. Chamirian, M. V. Dal, A. Akheyar, M. D. Potter, R. Lindsay, and K. Maex, Ni- and Co-Based Silicides for Advanced CMOS Applications, Microelectron. Eng. 70, 158-165 (2003).
    連結:
  80. 87. A. Alberti, C. Bongiorno, F. L. Via, and C. Spinella, High-Resolution Investigation of Atomic Interdiffusion during Co/Ni/Si Phase Transition, J. Appl. Phys. 94, 231-237 (2003).
    連結:
  81. 88. D. Smeets, J. Demeulemeester, K. D. Keyser, D. Deduytsche, C. Detavernier, C. M. Comrie, C. C. Theron, C. Lavoie, and A. Vantomme, Nucleation and Diffusion during Growth of Ternary Co1-xNixSi2 Thin Films Studied by Complementary Techniques in Real Time, J. Appl. Phys. 104, 093533 (2008).
    連結:
  82. 89. R. T. Tung, Oxide Mediated Epitaxy of CoSi2 on Silicon, Appl. Phys. Lett. 68, 3461-3463 (1996).
    連結:
  83. 90. G. W. Peng, A. C. H. Huan, E. S. Tok, and Y. P. Feng, Adsorption and Diffusion of Co on the Si(001) Surface, Phys. Rev. B 74, 195335 (2006).
    連結:
  84. 91. D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, Self-Limiting Growth of Strained Faceted Islands, Phys. Rev. Lett. 80, 5156-5159 (1998).
    連結:
  85. 92. M. Kästner and B. Voigtländer, Kinetically Self-Limiting Growth of Ge Islands on Si(001), Phys. Rev. Lett. 82, 2745-2748 (1999).
    連結:
  86. 93. D. Smeets, G. Vanhoyland, J. D’Haen, and A. Vantomme, On the Thermal Expansion Coefficient of CoSi2 and NiSi2, J. Phys. D 42, 235402 (2009).
    連結:
  87. 94. C. Bonet and S. P. Tear, Self-Assembly of Ultrafine Nanolines upon Ho Reaction with the Ge(001) Surface, Appl. Phys. Lett. 89, 203119 (2006).
    連結:
  88. 95. Z. Li, M. K. Singh, E. S. Tok, J. P. Y. Tan, M. Lin, and Y.-L. Foo, Kinetically Constraint Zero- and One-Dimensional Heteroepitaxial Island Growth, Appl. Phys. Lett. 90, 101914 (2007).
    連結:
  89. 96. Z.-P. Li, E. Tok, Y. Foo, In Situ Observation of Self-Assembled Fe13Ge8 Nanowires Growth on Anisotropic Ge (110) Surface, Mater. Res. Bull. 47, 438-444 (2012).
    連結:
  90. 97. C.-Y. Tsai, S.-Y. Yu, C.-L. Hsin, C.-W. Huang, C.-W. Wang, and W.-W. Wu, Growth and Properties of Single-Crystalline Ge Nanowires and Germanide/Ge Nano-Heterostructures, CrystEngComm 14, 53-58 (2012).
    連結:
  91. 98. Y.-I. Kim and F. Izumi, Structure Refinements with a New Version of the Rietveld-Refinement Program Rietan, J. Ceram. Soc. Jpn. 102, 401-404 (1994).
    連結:
  92. 1. N. Taniguchi, On the Basic Concept of ‘Nano-Technology’, at the International Conference of Production Engineering, Tokyo, Japan Society of Precision Engineering (1974).
  93. 10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon Lasers at Deep Subwavelength Scale, Nature 461, 629-632 (2009).
  94. 23. H. Yan, H. S. Choe, S. W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, Programmable Nanowire Circuits for Nanoprocessors, Nature 470, 240-244 (2011).
  95. 32. C. Cabral, Jr., J. Kedzierski, B. Linder, S. Zafar, V. Narayanan, S. Fang, A. Steegen, P. Kozlowski, R. Carruthers, and R. Jammy, Dual Workfunction Fully Silicided Metal Gates, in Symp. VLSI Dig. Tech., 184-185 (2004).
  96. 36. Binary Alloy Phase Diagrams: Plus Updates (Second Edition), CD-ROM, ASM International (2005).
  97. 37. D. Smeets, Nucleation, Diffusion and Texture during Growth of CoNi-Silicides, Ph.D. thesis, University of Leuven, Belgium (2007).
  98. 51. D. P. Brunco, B. D. Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, G. Winderickx, E. Vrancken, S. Sioncke, K. Opsomer, G. Nicholas, M. Caymax, A. Stesmans, J. V. Steenbergen, P. W. Mertens, M. Meuris, and M. M. Heyns, Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and Electrical Performance, J. Electrochem. Soc. 155, H552-H561 (2008).