Translated Titles

Ecevt Identifiction for Social Streams



Key Words

資料探勘 ; 事件偵測



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

As social media sites have emerged as power communication platform recent years, users share their opinions on these sites all day long. These wealthy user-generated data usually reflect real-world event. The goal of this work is to identify events from social streams. We proposed a new method which utilizes temporal bursts of keywords and their co-occurrence relationships to identify events for social streams. The experimental result shows the usefulness of our method.

Topic Category 基礎與應用科學 > 資訊科學
電機資訊學院 > 資訊系統與應用研究所
  1. [1] C. C. Aggarwal and K. Subbian. Event detection in social streams. In SDM,
  2. pages 624{635, 2012.
  3. [2] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and tracking.
  4. bad-words-list/, 2008.
  5. [4] T. Brants, F. Chen, and A. Farahat. A system for new event detection. In
  6. NY, USA, 2003. ACM.
  7. nual Meeting of the Association for Computational Linguistics: Human Language
  8. USA, 2011. Association for Computational Linguistics.
  9. survey of emerging trend detection in textual data mining, 2003.
  10. [7] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a
  11. [8] Q. Mei and C. Zhai. Discovering evolutionary theme patterns from text: an ex-
  12. Computer supported cooperative work, CSCW '10, pages 189{192, New York,
  13. NY, USA, 2010. ACM.
  14. [10] A.-M. Popescu and M. Pennacchiotti. Detecting controversial events from twit-
  15. [11] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-
  16. time event detection by social sensors. In WWW, pages 851{860, 2010.
  17. Twitterstand: news in tweets. In GIS, pages 42{51, 2009.
  18. [14] A. Surendran and S. Sra. Incremental aspect models for mining document
  19. [16] J. Weng and B.-S. Lee. Event detection in twitter. In ICWSM, 2011.
  20. In Proceedings of the 21st annual international ACM SIGIR conference on Re-
  21. search and development in information retrieval, SIGIR '98, pages 37{45, New
  22. York, NY, USA, 1998. ACM.
  23. [3] A. U. Alvarez. Bad words list. http://urbanoalvarez.es/blog/2008/04/04/
  24. Proceedings of the 26th annual international ACM SIGIR conference on Research
  25. and development in informaion retrieval, SIGIR '03, pages 330{337, New York,
  26. [5] K. Gimpel, N. Schneider, B. O'Connor, D. Das, D. Mills, J. Eisenstein, M. Heil-
  27. man, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech tagging for twitter: annotation, features, and experiments. In Proceedings of the 49th An-
  28. Technologies: short papers - Volume 2, HLT '11, pages 42{47, Stroudsburg, PA,
  29. [6] A. Kontostathis, L. Galitsky, W. M. Pottenger, S. Roy, and D. J. Phelps. A
  30. news media? In Proceedings of the 19th international conference on World wide
  31. web, WWW '10, pages 591{600, New York, NY, USA, 2010. ACM.
  32. ploration of temporal text mining. In Proceedings of the eleventh ACM SIGKDD
  33. international conference on Knowledge discovery in data mining, KDD '05, pages
  34. 198{207, New York, NY, USA, 2005. ACM.
  35. [9] M. Naaman, J. Boase, and C.-H. Lai. Is it really about me?: message content
  36. in social awareness streams. In Proceedings of the 2010 ACM conference on
  37. ter. In CIKM, pages 1873{1876, 2010.
  38. [12] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling.
  39. [13] H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social
  40. streams. In In Proceedings of the International Conference on Weblogs and Social
  41. Media (ICWSM 2009). AAAI, 2009.
  42. streams. In In PKDD, pages 633{640, 2006.
  43. [15] X.Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated bursty topic patterns
  44. from coordinated text streams. In Proceedings of the 13th ACM SIGKDD inter-
  45. national conference on Knowledge discovery and data mining, KDD '07, pages
  46. 784{793, New York, NY, USA, 2007. ACM.
  47. [17] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty detec-
  48. tion. In Proceedings of the eighth ACM SIGKDD international conference on
  49. Knowledge discovery and data mining, KDD '02, pages 688{693, New York, NY,
  50. USA, 2002. ACM.